Skip to main content

Advertisement

Log in

An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes)

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Adachi, T., Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka. Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J. Biomech. 42:1989–1995, 2009.

    Google Scholar 

  2. Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.

    Google Scholar 

  3. Adamson, R. H., J. F. Lenz, X. Zhang, G. N. Adamson, S. Weinbaum, and F. E. Curry. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557:889–907, 2004.

    Google Scholar 

  4. Akst, J. Full speed ahead: physical forces acting in and around cells are fast—and making waves in the world of molecular biology. Scientist 23:26–32, 2009.

    Google Scholar 

  5. Alenghat, F. J., S. M. Nauli, R. Kolb, J. Zhou, and D. E. Ingber. Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Exp. Cell Res. 301:23–30, 2004.

    Google Scholar 

  6. Alford, A. I., C. R. Jacobs, and H. J. Donahue. Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism small star, filled. Bone 33:64–70, 2003.

    Google Scholar 

  7. Anderson, C. T., A. B. Castillo, S. A. Brugmann, J. A. Helms, C. R. Jacobs, and T. Stearns. Primary cilia: cellular sensors for the skeleton. Anat. Rec. (Hoboken) 291:1074–1078, 2008.

    Google Scholar 

  8. Ayasaka, N., T. Kondo, T. Goto, M. A. Kido, E. Nagata, and T. Tanaka. Differences in the transport systems between cementocytes and osteocytes in rats using microperoxidase as a tracer. Arch. Oral Biol. 37:363–369, 1992.

    Google Scholar 

  9. Bakker, A. D., V. C. Silva, R. Krishnan, R. G. Bacabac, M. E. Blaauboer, R. A. Marcantonio, J. A. Cirelli, J. Klein-Nulend, and Y. C. Lin. Tumor necrosis factor alpha and interleukin-1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum. 60:3336–3345, 2009.

    Google Scholar 

  10. Bartles, J. R., L. Zheng, A. Li, A. Wierda, and B. Chen. Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J. Cell Biol. 143:107–119, 1998.

    Google Scholar 

  11. Bass, M. D., and M. J. Humphries. Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling. Biochem. J. 368:1–15, 2002.

    Google Scholar 

  12. Bates, J. M., J. Akerlund, E. Mittge, and K. Guillemin. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371–382, 2007.

    Google Scholar 

  13. Baumgartner, W., P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. Cadherin interaction probed by atomic force microscopy. Proc. Natl Acad. Sci. USA 97:4005–4010, 2000.

    Google Scholar 

  14. Broekhuizen, L. N., B. A. Lemkes, H. L. Mooij, M. C. Meuwese, H. Verberne, F. Holleman, R. O. Schlingemann, M. Nieuwdorp, E. S. Stroes, and H. Vink. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–2655, 2010.

    Google Scholar 

  15. Burg, M. B., and J. Orloff. Control of fluid absorption in the renal proximal tubule. J. Clin. Invest. 47:2016–2024, 1968.

    Google Scholar 

  16. Burger, E. H., J. Klein-Nulend, and T. H. Smit. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon—a proposal. J. Biomech. 36:1453–1459, 2003.

    Google Scholar 

  17. Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.

    Google Scholar 

  18. Burra, S., and J. X. Jiang. Connexin 43 hemichannel opening associated with Prostaglandin E(2) release is adaptively regulated by mechanical stimulation. Commun. Integr. Biol. 2:239–240, 2009.

    Google Scholar 

  19. Burra, S., D. P. Nicolella, W. L. Francis, C. J. Freitas, N. J. Mueschke, K. Poole, and J. X. Jiang. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl Acad. Sci. USA 107:13648–13653, 2010.

    Google Scholar 

  20. Chappell, D., M. Jacob, K. Hofmann-Kiefer, M. Rehm, U. Welsch, P. Conzen, and B. F. Becker. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc. Res. 83:388–396, 2009.

    Google Scholar 

  21. Cheng, B. X., Y. Kato, S. Zhao, J. Luo, E. Sprague, L. F. Bonewald, and J. X. Jiang. PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142:3464–3473, 2001.

    Google Scholar 

  22. Cheng, B., S. Zhao, J. Luo, E. Sprague, L. F. Bonewald, and J. X. Jiang. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J. Bone Miner. Res. 16:249–259, 2001.

    Google Scholar 

  23. Cherian, P. P., A. J. Siller-Jackson, S. Gu, X. Wang, L. F. Bonewald, E. Sprague, and J. X. Jiang. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol. Biol. Cell 16:3100–3106, 2005.

    Google Scholar 

  24. Cheung, W. Y., C. Liu, R. M. Tonelli-Zasarsky, C. A. Simmons, and L. You. Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J. Orthop. Res. 29:523–530, 2011.

    Google Scholar 

  25. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.

    Google Scholar 

  26. Ciani, C., S. B. Doty, and S. P. Fritton. Mapping bone interstitial fluid movement: displacement of ferritin tracer during histological processing. Bone 37:379–387, 2005.

    Google Scholar 

  27. Coluccio, L. M. Identification of the microvillar 110-kDa calmodulin complex (myosin-1) in kidney. Eur. J. Cell Biol. 56:286–294, 1991.

    Google Scholar 

  28. Cowin, S. C. Bone poroelasticity. J. Biomech. 32:217–238, 1999.

    Google Scholar 

  29. Damiano, E. R. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc. Res. 55:77–91, 1998.

    Google Scholar 

  30. Damiano, E. R., and T. M. Stace. A mechano-electrochemical model of radial deformation of the capillary glycocalyx. Biophys. J. 82:1153–1175, 2002.

    Google Scholar 

  31. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  32. del Alamo, J. C., G. N. Norwich, Y. S. Li, J. C. Lasheras, and S. Chien. Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc. Natl Acad. Sci. USA 105:15411–15416, 2008.

    Google Scholar 

  33. Dillaman, R. M. Movement of ferritin in the 2-day-old chick femur. Anat. Rec. 209:445–453, 1984.

    Google Scholar 

  34. Discher, D., C. Dong, J. J. Fredberg, F. Guilak, D. Ingber, P. Janmey, R. D. Kamm, G. W. Schmid-Schonbein, and S. Weinbaum. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37:847–859, 2009.

    Google Scholar 

  35. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    Google Scholar 

  36. Donahue, H. J. Gap junctions and biophysical regulation of bone cell differentiation. Bone 26:417–422, 2000.

    Google Scholar 

  37. Doty, S. B., and B. H. Schofield. Metabolic and structural changes within osteocytes of rat bone. In: Calcium, Parathyroid Hormone and the Calcitonins, edited by R. V. Talmage, and P. L. Munson. Amsterdam: Elsevier, 1972, pp. 353–364.

    Google Scholar 

  38. Du, Z., Y. Duan, Q. Yan, A. M. Weinstein, S. Weinbaum, and T. Wang. Mechanosensory function of microvilli of the kidney proximal tubule. Proc. Natl Acad. Sci. USA 101:13068–13073, 2004.

    Google Scholar 

  39. Du, Z., Q. Yan, Y. Duan, S. Weinbaum, A. M. Weinstein, and T. Wang. Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments. Am. J. Physiol. Renal Physiol. 290:F289–F296, 2006.

    Google Scholar 

  40. Duan, Y., N. Gotoh, Q. Yan, Z. Du, A. M. Weinstein, T. Wang, and S. Weinbaum. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc. Natl Acad. Sci. USA 105:11418–11423, 2008.

    Google Scholar 

  41. Duan, Y., A. M. Weinstein, S. Weinbaum, and T. Wang. Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells. Proc. Natl Acad. Sci. USA 107:21860–21865, 2010.

    Google Scholar 

  42. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Google Scholar 

  43. Essig, M., F. Terzi, M. Burtin, and G. Friedlander. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am. J. Physiol. Renal Physiol. 281:F751–F762, 2001.

    Google Scholar 

  44. Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.

    Google Scholar 

  45. Federman, M., and G. Nichols, Jr. Bone cell cilia: vestigial or functional organelles? Calcif. Tissue Res. 17:81–85, 1974.

    Google Scholar 

  46. Fehon, R. G., A. I. McClatchey, and A. Bretscher. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11:276–287, 2010.

    Google Scholar 

  47. Feng, J., and S. Weinbaum. Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J. Fluid Mech. 422:281–317, 2000.

    Google Scholar 

  48. Flaherty, J. T., J. E. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30:23–33, 1972.

    Google Scholar 

  49. Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142, 2003.

    Google Scholar 

  50. Fornells, P., J. M. Garcia-Aznar, and M. Doblare. A finite element dual porosity approach to model deformation-induced fluid flow in cortical bone. Ann. Biomed. Eng. 35:1687–1698, 2007.

    Google Scholar 

  51. Frangos, J. A., S. G. Eskin, L. V. McIntire, and C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479, 1985.

    Google Scholar 

  52. Fritton, S. P., K. J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:317–325, 2000.

    Google Scholar 

  53. Fritton, S. P., and S. Weinbaum. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41:347–374, 2009.

    Google Scholar 

  54. Fu, B. M., B. Chen, and W. Chen. An electrodiffusion model for effects of surface glycocalyx layer on microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 284:H1240–H1250, 2003.

    Google Scholar 

  55. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Google Scholar 

  56. Gao, L., and H. H. Lipowsky. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80:394–401, 2010.

    Google Scholar 

  57. Genetos, D. C., C. J. Kephart, Y. Zhang, C. E. Yellowley, and H. J. Donahue. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J. Cell. Physiol. 212:207–214, 2007.

    Google Scholar 

  58. Goldberg, R. F., W. G. Austen, Jr., X. Zhang, G. Munene, G. Mostafa, S. Biswas, M. McCormack, K. R. Eberlin, J. T. Nguyen, H. S. Tatlidede, H. S. Warren, S. Narisawa, J. L. Millan, and R. A. Hodin. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc. Natl Acad. Sci. USA 105:3551–3556, 2008.

    Google Scholar 

  59. Goldfinger, L. E., E. Tzima, R. Stockton, W. B. Kiosses, K. Kinbara, E. Tkachenko, E. Gutierrez, A. Groisman, P. Nguyen, S. Chien, and M. H. Ginsberg. Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circ. Res. 103:177–185, 2008.

    Google Scholar 

  60. Goulet, G. C., D. Coombe, R. J. Martinuzzi, and R. F. Zernicke. Poroelastic evaluation of fluid movement through the lacunocanalicular system. Ann. Biomed. Eng. 37:1390–1402, 2009.

    Google Scholar 

  61. Guo, P., A. M. Weinstein, and S. Weinbaum. A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am. J. Physiol. Renal Physiol. 279:F698–F712, 2000.

    Google Scholar 

  62. Gururaja, S., H. J. Kim, C. C. Swan, R. A. Brand, and R. S. Lakes. Modeling deformation-induced fluid flow in cortical bone’s canalicular-lacunar system. Ann. Biomed. Eng. 33:7–25, 2005.

    Google Scholar 

  63. Han, Y. F., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Natl Acad. Sci. USA 101:16689–16694, 2004.

    Google Scholar 

  64. Han, Y., S. Weinbaum, J. A. E. Spaan, and H. Vink. Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554:217–235, 2006.

    Google Scholar 

  65. Hecker, M., A. Mulsch, E. Bassenge, and R. Busse. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am. J. Physiol. 265:H828–H833, 1993.

    Google Scholar 

  66. Heinrich, V., and C. Ounkomol. Force versus axial deflection of pipette-aspirated closed membranes. Biophys. J. 93:363–372, 2007.

    Google Scholar 

  67. Henry, C. B., and B. R. Duling. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–H514, 1999.

    Google Scholar 

  68. Herzog, F. A., J. Geraedts, D. Hoey, and C. R. Jacobs. A mathematical approach to study the bending behavior of the primary cilium. In: Bioengineering Conference, Proceedings of the 2010 IEEE 36th Annual Northeast, New York, NY, 2010.

  69. Hildebrandt, F., and E. Otto. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat. Rev. Genet. 6:928–940, 2005.

    Google Scholar 

  70. Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285:751–759, 2001.

    Google Scholar 

  71. Hu, S., L. Eberhard, J. Chen, J. C. Love, J. P. Butler, J. J. Fredberg, G. M. Whitesides, and N. Wang. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. Cell Physiol. 287:C1184–C1191, 2004.

    Google Scholar 

  72. Hu, X., and S. Weinbaum. A new view of starling’s hypothesis at the microstructural level. Microvasc. Res. 58:281–304, 1999.

    Google Scholar 

  73. Ihrcke, N. S., L. E. Wrenshall, B. J. Lindman, and J. L. Platt. Role of heparan sulfate in immune system-blood vessel interactions. Immunol. Today 14:500–505, 1993.

    Google Scholar 

  74. Ingber, D. E., and I. Tensegrity. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173, 2003.

    Google Scholar 

  75. Jacobs, C. R., S. Temiyasathit, and A. B. Castillo. Osteocyte mechanobiology and pericellular mechanics. Annu. Rev. Biomed. Eng. 12:369–400, 2010.

    Google Scholar 

  76. Kitase, Y., L. Barragan, H. Qing, S. Kondoh, J. X. Jiang, M. L. Johnson, and L. F. Bonewald. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J. Bone Miner. Res. 25:2381–2392, 2010.

    Google Scholar 

  77. Klein-Nulend, J., C. M. Semeins, N. E. Ajubi, P. J. Nijweide, and E. H. Burger. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217:640–648, 1995.

    Google Scholar 

  78. Klein-Nulend, J., A. van der Plas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441–445, 1995.

    Google Scholar 

  79. Knothe Tate, M. L., and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:247–254, 2000.

    Google Scholar 

  80. Knothe Tate, M. L., R. Steck, M. R. Forwood, and P. Niederer. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203(Pt 18):2737–2745, 2000.

    Google Scholar 

  81. Knothe Tate, M. L., P. Niederer, and U. Knothe. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:107–117, 1998.

    Google Scholar 

  82. Kotsis, F., R. Nitschke, M. Doerken, G. Walz, and E. W. Kuehn. Flow modulates centriole movements in tubular epithelial cells. Pflugers Arch. 456:1025–1035, 2008.

    Google Scholar 

  83. Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–C636, 1994.

    Google Scholar 

  84. Kuchan, M. J., H. Jo, and J. A. Frangos. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267:C753–C758, 1994.

    Google Scholar 

  85. Kwon, R. Y., D. R. Meays, W. J. Tang, and J. A. Frangos. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J. Bone Miner. Res. 25:1798–1807, 2010.

    Google Scholar 

  86. Kwon, R. Y., and J. A. Frangos. Quantification of lacunar-canalicular interstitial fluid flow through computational modeling of fluorescence recovery after photobleaching. Cell Mol. Bioeng. 3:296–306, 2010.

    Google Scholar 

  87. Kwon, R. Y., S. Temiyasathit, P. Tummala, C. C. Quah, and C. R. Jacobs. Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J. 24:2859–2868, 2010.

    Google Scholar 

  88. Lamprecht, G., E. J. Weinman, and C. H. Yun. The role of NHERF and E3KARP in the cAMP-mediated inhibition of NHE3. J. Biol. Chem. 273:29972–29978, 1998.

    Google Scholar 

  89. Li, S., P. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J. L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl Acad. Sci. USA 99:3546–3551, 2002.

    Google Scholar 

  90. Li, Y. S., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.

    Google Scholar 

  91. Li, J., D. Liu, H. Z. Ke, R. L. Duncan, and C. H. Turner. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J. Biol. Chem. 280:42952–42959, 2005.

    Google Scholar 

  92. Litzenberger, J. B., J. B. Kim, P. Tummala, and C. R. Jacobs. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif. Tissue Int. 86:325–332, 2010.

    Google Scholar 

  93. Liu, W., S. Xu, C. Woda, P. Kim, S. Weinbaum, and L. M. Satlin. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am. J. Physiol. Renal Physiol. 285:F998–F1012, 2003.

    Google Scholar 

  94. Lopez-Quintero, S. V., R. Amaya, M. Pahakis, and J. M. Tarbell. The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. Am. J. Physiol. Heart Circ. Physiol. 296:H1451–H1456, 2009.

    Google Scholar 

  95. Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.

    Google Scholar 

  96. Maddox, D. A., S. M. Fortin, A. Tartini, W. D. Barnes, and F. J. Gennari. Effect of acute changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex. J. Clin. Invest. 89:1296–1303, 1992.

    Google Scholar 

  97. Mak, A. F. T., L. Qin, L. K. Hung, C. W. Cheng, and C. F. Tin. A histomorphometric observation of flows in cortical bone under dynamic loading. Microvasc. Res. 59:290–300, 2000.

    Google Scholar 

  98. Malone, A. M., N. N. Batra, G. Shivaram, R. Y. Kwon, L. You, C. H. Kim, J. Rodriguez, K. Jair, and C. R. Jacobs. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. Am. J. Physiol. Cell Physiol. 292:C1830–C1836, 2007.

    Google Scholar 

  99. Maunsbach, A. Ultrastructure of the proximal tubule. In: Handbook of Physiology, Section 8: Renal Physiology, edited by J. Orloff, and R. Berliner. Washington, DC: Am Physiol Soc, 1973, pp. 31–79.

  100. McConnell, R. E., J. N. Higginbotham, D. A. Shifrin, Jr., D. L. Tabb, R. J. Coffey, and M. J. Tyska. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185:1285–1298, 2009.

    Google Scholar 

  101. McDonough, A. A. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R851–R861, 2010.

    Google Scholar 

  102. McNamara, L. M., A. G. Ederveen, C. G. Lyons, C. Price, M. B. Schaffler, H. Weinans, and P. J. Prendergast. Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400, 2006.

    Google Scholar 

  103. McNamara, L. M., R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler. Primary cilia in bone: few in number and restricted in their location. Anat. Rec. 2011 (accepted).

  104. McNamara, L. M., R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler. Attachment of osteocyte cell processes to the bone matrix. Anat. Rec. (Hoboken) 292:355–363, 2009.

    Google Scholar 

  105. Michel, C. C. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp. Physiol. 82:1–30, 1997.

    Google Scholar 

  106. Montgomery, R. J., B. D. Sutker, J. T. Bronk, S. R. Smith, and P. J. Kelly. Interstitial fluid flow in cortical bone. Microvasc. Res. 35:295–307, 1988.

    Google Scholar 

  107. Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.

    Google Scholar 

  108. Nauli, S. M., F. J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A. E. H. Elia, W. Lu, E. M. Brown, S. J. Quinn, D. E. Ingber, and J. Zhou. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33:129–137, 2003.

    Google Scholar 

  109. Nieuwdorp, M., T. W. van Haeften, M. C. Gouverneur, H. L. Mooij, M. H. van Lieshout, M. Levi, J. C. Meijers, F. Holleman, J. B. Hoekstra, H. Vink, J. J. Kastelein, and E. S. Stroes. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486, 2006.

    Google Scholar 

  110. Noonan, K. J., J. W. Stevens, R. Tammi, M. Tammi, J. A. Hernandez, and R. J. Midura. Spatial distribution of CD44 and hyaluronan in the proximal tibia of the growing rat. J. Orthop. Res. 14:573–581, 1996.

    Google Scholar 

  111. Orci, L., F. Humbert, D. Brown, and A. Perrelet. Membrane ultrastructure in urinary tubules. Int. Rev. Cytol. 73:183–242, 1981.

    Google Scholar 

  112. Pahakis, M. Y., J. R. Kosky, R. O. Dull, and J. M. Tarbell. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355:228–233, 2007.

    Google Scholar 

  113. Piekarski, K., and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269:80–82, 1977.

    Google Scholar 

  114. Pohl, U., K. Herlan, A. Huang, and E. Bassenge. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261:H2016–H2023, 1991.

    Google Scholar 

  115. Ponik, S. M., J. W. Triplett, and F. M. Pavalko. Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J. Cell. Biochem. 100:794–807, 2007.

    Google Scholar 

  116. Praetorius, H. A., and K. R. Spring. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184:71–79, 2001.

    Google Scholar 

  117. Praetorius, H. A., and K. R. Spring. Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191:69–76, 2003.

    Google Scholar 

  118. Praetorius, H. A., and K. R. Spring. A physiological view of the primary cilium. Annu. Rev. Physiol. 67:515–529, 2005.

    Google Scholar 

  119. Preisig, P. A. Luminal flow rate regulates proximal tubule H-HCO3 transporters. Am. J. Physiol. 262:F47–F54, 1992.

    Google Scholar 

  120. Price, C., X. Zhou, W. Li, and L. Wang. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J. Bone Miner. Res. 26:277–285, 2011.

    Google Scholar 

  121. Pries, A. R., T. W. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflugers Arch. 440:653–666, 2000.

    Google Scholar 

  122. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75:904–915, 1994.

    Google Scholar 

  123. Qin, Y. X., T. Kaplan, A. Saldanha, and C. Rubin. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J. Biomech. 36:1427–1437, 2003.

    Google Scholar 

  124. Qin, L., A. T. Mak, C. W. Cheng, L. K. Hung, and K. M. Chan. Histomorphological study on pattern of fluid movement in cortical bone in goats. Anat. Rec. 255:380–387, 1999.

    Google Scholar 

  125. Rapraeger, A., M. Jalkanen, E. Endo, J. Koda, and M. Bernfield. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J. Biol. Chem. 260:11046–11052, 1985.

    Google Scholar 

  126. Reich, K. M., and J. A. Frangos. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261:C428–C432, 1991.

    Google Scholar 

  127. Reilly, G. C., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Fluid flow induced PGE_2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology 40:591–603, 2003.

    Google Scholar 

  128. Resnick, A. Use of optical tweezers to probe epithelial mechanosensation. J. Biomed. Opt. 15:015005, 2010.

    Google Scholar 

  129. Resnick, A., and U. Hopfer. Force-response considerations in ciliary mechanosensation. Biophys. J. 93:1380–1390, 2007.

    Google Scholar 

  130. Rodman, J. S., M. Mooseker, and M. G. Farquhar. Cytoskeletal proteins of the rat kidney proximal tubule brush border. Eur. J. Cell Biol. 42:319–327, 1986.

    Google Scholar 

  131. Rostgaard, J., and K. Qvortrup. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc. Res. 53:1–13, 1997.

    Google Scholar 

  132. Roth, K. E., C. L. Rieder, and S. S. Bowser. Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9 + 0) cilia in cultured kidney epithelia. J. Cell. Sci. 89(Pt 4):457–466, 1988.

    Google Scholar 

  133. Rydholm, S., G. Zwartz, J. M. Kowalewski, P. Kamali-Zare, T. Frisk, and H. Brismar. Mechanical properties of primary cilia regulate the response to fluid flow. Am. J. Physiol. Renal Physiol. 298:F1096–F1102, 2010.

    Google Scholar 

  134. Santos, A., A. D. Bakker, B. Zandieh-Doulabi, J. M. de Blieck-Hogervorst, and J. Klein-Nulend. Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem. Biophys. Res. Commun. 391:364–369, 2010.

    Google Scholar 

  135. Santos, A., A. D. Bakker, B. Zandieh-Doulabi, C. M. Semeins, and J. Klein-Nulend. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J. Orthop. Res. 27:1280–1287, 2009.

    Google Scholar 

  136. Satlin, L. M., and L. G. Palmer. Apical K+ conductance in maturing rabbit principal cell. Am. J. Physiol. 272:F397–F404, 1997.

    Google Scholar 

  137. Schnermann, J., M. Wahl, G. Liebau, and H. Fischbach. Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate. Pflugers Arch. 304:90–103, 1968.

    Google Scholar 

  138. Schwartz, E. A., M. L. Leonard, R. Bizios, and S. S. Bowser. Analysis and modeling of the primary cilium bending response to fluid shear. Am. J. Physiol. 272:F132–F138, 1997.

    Google Scholar 

  139. Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–H1022, 1998.

    Google Scholar 

  140. Secomb, T. W., R. Hsu, and A. R. Pries. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38:143–150, 2001.

    Google Scholar 

  141. Secomb, T. W., R. Hsu, and A. R. Pries. Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am. J. Physiol. Heart Circ. Physiol. 281:H629–H636, 2001.

    Google Scholar 

  142. Shyy, J. Y., and S. Chien. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91:769–775, 2002.

    Google Scholar 

  143. Simon, A., and M. C. Durrieu. Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 37:1–13, 2006.

    Google Scholar 

  144. Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.

    Google Scholar 

  145. Starling, E. H. On the absorption of fluids from the connective tissue spaces. J. Physiol. 19:312–326, 1896.

    Google Scholar 

  146. Stevens, A. P., V. Hlady, and R. O. Dull. Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L328–L335, 2007.

    Google Scholar 

  147. Su, M., H. Jiang, P. Zhang, Y. Liu, E. Wang, A. Hsu, and H. Yokota. Knee-loading modality drives molecular transport in mouse femur. Ann. Biomed. Eng. 34:1600–1606, 2006.

    Google Scholar 

  148. Tami, A. E., M. B. Schaffler, and M. L. Knothe Tate. Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology 40:577–590, 2003.

    Google Scholar 

  149. Tan, S. D., A. D. Bakker, C. M. Semeins, A. M. Kuijpers-Jagtman, and J. Klein-Nulend. Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem. Biophys. Res. Commun. 369:1150–1154, 2008.

    Google Scholar 

  150. Tan, S. D., T. J. de Vries, A. M. Kuijpers-Jagtman, C. M. Semeins, V. Everts, and J. Klein-Nulend. Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751, 2007.

    Google Scholar 

  151. Tan, S. D., A. M. Kuijpers-Jagtman, C. M. Semeins, A. L. Bronckers, J. C. Maltha, J. W. Von den Hoff, V. Everts, and J. Klein-Nulend. Fluid shear stress inhibits TNFalpha-induced osteocyte apoptosis. J. Dent. Res. 85:905–909, 2006.

    Google Scholar 

  152. Tanaka, T., and A. Sakano. Differences in permeability of microperoxidase and horseradish peroxidase into the alveolar bone of developing rats. J. Dent. Res. 64:870–876, 1985.

    Google Scholar 

  153. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.

    Google Scholar 

  154. Tarbell, J. M., and E. E. Ebong. Endothelial glycocalyx structure and role in mechanotransduction. In: Hemodynamics and Mechanobiology of Endothelium, edited by T. K. Hsiai, B. Blackman, and H. Jo. Singpore: World Scientific Publishing Co. Pte. Ltd., 2010, pp. 69–95.

  155. Tarbell, J. M., and M. Y. Pahakis. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–350, 2006.

    Google Scholar 

  156. Temiyasathit, S., and C. R. Jacobs. Osteocyte primary cilium and its role in bone mechanotransduction. Ann. N. Y. Acad. Sci. 1192:422–428, 2010.

    Google Scholar 

  157. Thi, M. M., T. Kojima, S. C. Cowin, S. Weinbaum, and D. C. Spray. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am. J. Physiol. Cell Physiol. 284:C389–C403, 2003.

    Google Scholar 

  158. Thi, M. M., S. O. Suadicani, and D. C. Spray. Fluid flow-induced soluble vascular endothelial growth factor isoforms regulate actin adaptation in osteoblasts. J. Biol. Chem. 285:30931–30941, 2010.

    Google Scholar 

  159. Thi, M. M., J. M. Tarbell, S. Weinbaum, and D. C. Spray. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl Acad. Sci. USA 101:16483–16488, 2004.

    Google Scholar 

  160. Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, R. M. Nerem, and D. G. Harrison. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 269:C1371–C1378, 1995.

    Google Scholar 

  161. van den Berg, B. M., H. Vink, and J. A. Spaan. The endothelial glycocalyx protects against myocardial edema. Circ. Res. 92:592–594, 2003.

    Google Scholar 

  162. Vezeridis, P. S., C. M. Semeins, Q. Chen, and J. Klein-Nulend. Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem. Biophys. Res. Commun. 348:1082–1088, 2006.

    Google Scholar 

  163. Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.

    Google Scholar 

  164. Visscher, K., and S. M. Block. Versatile optical traps with feedback control. Methods Enzymol. 298:460–489, 1998.

    Google Scholar 

  165. Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040–1045, 2005.

    Google Scholar 

  166. Wang, L., C. Ciani, S. B. Doty, and S. P. Fritton. Delineating bone’s interstitial fluid pathway in vivo. Bone 34:499–509, 2004.

    Google Scholar 

  167. Wang, L., S. P. Fritton, S. Weinbaum, and S. C. Cowin. On bone adaptation due to venous stasis. J. Biomech. 36:1439–1451, 2003.

    Google Scholar 

  168. Wang, N., H. Miao, Y. S. Li, P. Zhang, J. H. Haga, Y. Hu, A. Young, S. Yuan, P. Nguyen, C. C. Wu, and S. Chien. Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem. Biophys. Res. Commun. 341:1244–1251, 2006.

    Google Scholar 

  169. Wang, L. Y., Y. L. Wang, Y. F. Han, S. C. Henderson, R. J. Majeska, S. Weinbaum, and M. B. Schaffler. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc. Natl Acad. Sci. USA 102:11911–11916, 2005.

    Google Scholar 

  170. Wang, Y., L. M. McNamara, M. B. Schaffler, and S. Weinbaum. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc. Natl Acad. Sci. USA 104:15941–15946, 2007.

    Google Scholar 

  171. Weinbaum, S. 1997 Whitaker distinguished lecture: models to solve mysteries in biomechanics at the cellular level; a new view of fiber matrix layers. Ann. Biomed. Eng. 26:627–643, 1998.

    Google Scholar 

  172. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Google Scholar 

  173. Weinbaum, S., Y. Duan, L. M. Satlin, T. Wang, and A. M. Weinstein. Mechanotransduction in the renal tubule. Am. J. Physiol. Renal Physiol. 299:F1220–F1236, 2010.

    Google Scholar 

  174. Weinbaum, S., P. Guo, and L. You. A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology 38:119–142, 2001.

    Google Scholar 

  175. Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    Google Scholar 

  176. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. USA 100:7988–7995, 2003.

    Google Scholar 

  177. Weinstein, A. M., S. Weinbaum, Y. Duan, Z. Du, Q. Yan, and T. Wang. Flow-dependent transport in a mathematical model of rat proximal tubule. Am. J. Physiol. Renal Physiol. 292:F1164–F1181, 2007.

    Google Scholar 

  178. Wu, D., P. Ganatos, D. C. Spray, and S. Weinbaum. On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. J. Biomech. 44:1707–1708, 2011.

    Google Scholar 

  179. Yao, Y., A. Rabodzey, and C. F. Dewey, Jr. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H1023–H1030, 2007.

    Google Scholar 

  180. You, L. D., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34:1375–1386, 2001.

    Google Scholar 

  181. You, L. D., S. Temiyasathit, P. Lee, C. H. Kim, P. Tummala, W. Yao, W. Kingery, A. M. Malone, R. Y. Kwon, and C. R. Jacobs. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42:172–179, 2008.

    Google Scholar 

  182. You, L. D., S. Temiyasathit, E. Tao, F. Prinz, and C. R. Jacobs. 3D microfluidic approach to mechanical stimulation of osteocyte processes. Cel. Mol. Bioeng. 1:103–107, 2008.

    Google Scholar 

  183. You, L. D., S. Weinbaum, S. C. Cowin, and M. B. Schaffler. Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. 278A:505–513, 2004.

    Google Scholar 

  184. You, J., C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122:387–393, 2000.

    Google Scholar 

  185. Zhang, X., R. H. Adamson, F. R. Curry, and S. Weinbaum. A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle. Am. J. Physiol. Heart Circ. Physiol. 291:H2950–H2964, 2006.

    Google Scholar 

  186. Zhang, X., F. R. Curry, and S. Weinbaum. Mechanism of osmotic flow in a periodic fiber array. Am. J. Physiol. Heart Circ. Physiol. 290:H844–H852, 2006.

    Google Scholar 

  187. Zhao, Y., S. Chien, and S. Weinbaum. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80:1124–1140, 2001.

    Google Scholar 

  188. Zhao, H., H. Shiue, S. Palkon, Y. Wang, P. Cullinan, J. K. Burkhardt, M. W. Musch, E. B. Chang, and J. R. Turner. Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport. Proc. Natl Acad. Sci. USA 101:9485–9490, 2004.

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grants HL44485 (endothelium), DK-62289 (renal), and AR48699 and AR057139 (bone).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Weinbaum.

Additional information

Associate Editors John Shyy and Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinbaum, S., Duan, Y., Thi, M.M. et al. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cel. Mol. Bioeng. 4, 510–537 (2011). https://doi.org/10.1007/s12195-011-0179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0179-6

Keywords

Navigation