Skip to main content
Log in

Regulation of Adipose Tissue Metabolism in Humans: Analysis of Responses to the Hyperinsulinemic-Euglycemic Clamp Experiment

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The suppression of lipolysis is one of the key metabolic responses of the adipose tissue during hyperinsulinemia. The failure to respond and resulting increase in plasma fatty acids could contribute to the development of insulin resistance and perturbations in the fuel homeostasis in the whole body. In this study, a mechanistic, computational model of adipose tissue metabolism in vivo has been enhanced to simulate the physiological responses during hyperinsulinemic-euglycemic clamp experiment in humans. The model incorporates metabolic intermediates and pathways that are important in the fed state. In addition, it takes into account the heterogeneity of triose phosphate pools (glycolytic vs. glyceroneogenic), within the adipose tissue. The model can simulate not only steady-state responses at different insulin levels, but also concentration dynamics of major metabolites in the adipose tissue venous blood in accord with the in vivo data. Simulations indicate that (1) regulation of lipoprotein lipase (LPL) reaction is important when the intracellular lipolysis is suppressed by insulin; (2) intracellular diglyceride levels can affect the regulatory mechanisms; and (3) glyceroneogenesis is the dominant pathway for glycerol-3-phosphate synthesis even in the presence of increased glucose uptake by the adipose tissue. Reduced redox and increased phosphorylation states provide a favorable milieu for glyceroneogenesis in response to insulin. A parameter sensitivity analysis predicts that insulin-stimulated glucose uptake would be more severely affected by impairment of GLUT4 translocation and glycolysis than by impairment of glycogen synthesis and pyruvate oxidation. Finally, simulations predict metabolic responses to altered expression of phosphoenolpyruvate carboxykinase (PEPCK). Specifically, the increase in the rate of re-esterification of fatty acids observed experimentally with the overexpression of PEPCK in the adipose tissue would be accompanied by the up-regulation of acyl Co-A synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Assimacopoulos-Jeannet, F., and B. Jeanrenaud. Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J. Biol. Chem. 265:7202–7206, 1990.

    Google Scholar 

  2. Assimacopoulos-Jeannet, F., I. Cusin, R. M. Greco-Perotto, J. Terrettaz, F. Rohner-Jeanrenaud, N. Zarjevski, and B. Jeanrenaud. Glucose transporters: structure, function, and regulation. Biochimie 73:67–70, 1991.

    Article  Google Scholar 

  3. Beale, E. G., and E. J. Tishler. Expression and regulation of cytosolic phosphoenolpyruvate carboxykinase in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 189:925–930, 1992.

    Article  Google Scholar 

  4. Bodenlenz, M., L. A. Schaupp, T. Druml, R. Sommer, A. Wutte, H. C. Schaller, F. Sinner, P. Wach, and T. R. Pieber. Measurement of interstitial insulin in human adipose and muscle tissue under moderate hyperinsulinemia by means of direct interstitial access. Am. J. Physiol. Endocrinol. Metab. 289:E296–E300, 2005.

    Article  Google Scholar 

  5. Carmen, G. Y., and S. M. Victor. Signalling mechanisms regulating lipolysis. Cell Signal. 18:401–408, 2006.

    Article  Google Scholar 

  6. Casazza, J. P., and R. L. Veech. The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats. J. Biol. Chem. 261:690–698, 1986.

    Google Scholar 

  7. Chang, T. J., W. J. Lee, H. M. Chang, K. C. Lee, and L. M. Chuang. Expression of subcutaneous adipose tissue phosphoenolpyruvate carboxykinase correlates with body mass index in nondiabetic women. Metabolism 57:367–372, 2008.

    Article  Google Scholar 

  8. Coppack, S. W., K. N. Frayn, S. M. Humphreys, H. Dhar, and T. D. Hockaday. Effects of insulin on human adipose tissue metabolism in vivo. Clin. Sci. (Lond) 77:663–670, 1989.

    Google Scholar 

  9. Coppack, S. W., K. N. Frayn, and S. M. Humphreys. Plasma triacylglycerol extraction in human adipose tissue in vivo: effects of glucose ingestion and insulin infusion. Eur. J. Clin. Nutr. 43:493–496, 1989.

    Google Scholar 

  10. Coppack, S. W., K. N. Frayn, S. M. Humphreys, P. L. Whyte, and T. D. Hockaday. Arteriovenous differences across human adipose and forearm tissues after overnight fast. Metabolism 39:384–390, 1990.

    Article  Google Scholar 

  11. DeFronzo, R. A., E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J. P. Felber. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30:1000–1007, 1981.

    Google Scholar 

  12. Edens, N. K., R. L. Leibel, and J. Hirsch. Lipolytic effects on diacylglycerol accumulation in human adipose tissue in vitro. J. Lipid Res. 31:1351–1359, 1990.

    Google Scholar 

  13. Franckhauser, S., S. Munoz, A. Pujol, A. Casellas, E. Riu, P. Otaegui, B. Su, and F. Bosch. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51:624–630, 2002.

    Article  Google Scholar 

  14. Frayn, K. N., S. Shadid, R. Hamlani, S. M. Humphreys, M. L. Clark, B. A. Fielding, O. Boland, and S. W. Coppack. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol. 266:E308–E317, 1994.

    Google Scholar 

  15. Grimmsmann, T., K. Levin, M. M. Meyer, H. Beck-Nielsen, and H. H. Klein. Delays in insulin signaling towards glucose disposal in human skeletal muscle. J. Endocrinol. 172:645–651, 2002.

    Article  Google Scholar 

  16. Haemmerle, G., R. Zimmermann, M. Hayn, C. Theussl, G. Waeg, E. Wagner, W. Sattler, T. M. Magin, E. F. Wagner, and R. Zechner. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277:4806–4815, 2002.

    Article  Google Scholar 

  17. Haemmerle, G., A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer, J. Rozman, G. Heldmaier, R. Maier, C. Theussl, S. Eder, D. Kratky, E. F. Wagner, M. Klingenspor, G. Hoefler, and R. Zechner. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737, 2006.

    Article  Google Scholar 

  18. Jansson, P. A., A. Larsson, U. Smith, and P. Lonnroth. Lactate release from the subcutaneous tissue in lean and obese men. J. Clin. Invest. 93:240–246, 1994.

    Article  Google Scholar 

  19. Karpe, F., B. A. Fielding, J. L. Ardilouze, V. Ilic, I. A. Macdonald, and K. N. Frayn. Effects of insulin on adipose tissue blood flow in man. J. Physiol. 540:1087–1093, 2002.

    Article  Google Scholar 

  20. Kershaw, E. E., J. K. Hamm, L. A. Verhagen, O. Peroni, M. Katic, and J. S. Flier. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 55:148–157, 2006.

    Article  Google Scholar 

  21. Kim, J., G. M. Saidel, and S. C. Kalhan. A computational model of adipose tissue metabolism: evidence for intracellular compartmentation and differential activation of lipases. J. Theor. Biol. 251:523–540, 2008.

    Article  Google Scholar 

  22. Lewis, G. F., K. D. Uffelman, L. W. Szeto, and G. Steiner. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes 42:833–842, 1993.

    Article  Google Scholar 

  23. Londos, C., D. L. Brasaemle, C. J. Schultz, J. P. Segrest, and A. R. Kimmel. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell Dev. Biol. 10:51–58, 1999.

    Article  Google Scholar 

  24. Mandarino, L. J., A. Consoli, A. Jain, and D. E. Kelley. Differential regulation of intracellular glucose metabolism by glucose and insulin in human muscle. Am. J. Physiol. 265:E898–E905, 1993.

    Google Scholar 

  25. Mandarino, L. J., R. L. Printz, K. A. Cusi, P. Kinchington, R. M. O’Doherty, H. Osawa, C. Sewell, A. Consoli, D. K. Granner, and R. A. DeFronzo. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am. J. Physiol. 269:E701–E708, 1995.

    Google Scholar 

  26. Martin, G., K. Schoonjans, A. M. Lefebvre, B. Staels, and J. Auwerx. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J. Biol. Chem. 272:28210–28217, 1997.

    Article  Google Scholar 

  27. McLean, P., A. L. Greenbaum, J. Brown, and K. R. Greenslade. Influence of hormones on the nicotinamide nucleotide coenzymes of adipose tissue. Biochem. J. 105:1013–1018, 1967.

    Google Scholar 

  28. Miyoshi, H., J. W. Perfield, S. C. Souza, W. J. Shen, H. H. Zhang, Z. S. Stancheva, F. B. Kraemer, M. S. Obin, and A. S. Greenberg. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J. Biol. Chem. 282:996–1002, 2007.

    Article  Google Scholar 

  29. Moustaid, N., B. H. Jones, and J. W. Taylor. Insulin increases lipogenic enzyme activity in human adipocytes in primary culture. J. Nutr. 126:865–870, 1996.

    Google Scholar 

  30. Muretta, J. M., I. Romenskaia, and C. C. Mastick. Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis. J. Biol. Chem. 283:311–323, 2008.

    Article  Google Scholar 

  31. Nye, C. K., R. W. Hanson, and S. C. Kalhan. Glyceroneogenesis is the dominant pathway for triglyceride glycerol synthesis in vivo in the rat. J. Biol. Chem. 283:27565–27574, 2008.

    Article  Google Scholar 

  32. Pastan, I., V. Wills, B. Herring, and J. B. Field. Pyridine nucleotides in the thyroid. I. A method for the measurement of oxidized and reduced triphosphopyridine nucleotides with the use of 6-Pphosphogluconate-1-C14. J. Biol. Chem. 238:3362–3365, 1963.

    Google Scholar 

  33. Qvisth, V., E. Hagstrom-Toft, E. Moberg, S. Sjoberg, and J. Bolinder. Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am. J. Physiol. Endocrinol. Metab. 292:E709–E714, 2007.

    Article  Google Scholar 

  34. Reshef, L., and R. W. Hanson. The interaction of catecholamines and adrenal corticosteroids in the induction of phosphopyruvate carboxylase in rat liver and adipose tissue. Biochem. J. 127:809–818, 1972.

    Google Scholar 

  35. Reshef, L., R. W. Hanson, and F. J. Ballard. Glyceride-glycerol synthesis from pyruvate. Adaptive changes in phosphoenolpyruvate carboxykinase and pyruvate carboxylase in adipose tissue and liver. J. Biol. Chem. 244:1994–2001, 1969.

    Google Scholar 

  36. Reshef, L., Y. Olswang, H. Cassuto, B. Blum, C. M. Croniger, S. C. Kalhan, S. M. Tilghman, and R. W. Hanson. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278:30413–30416, 2003.

    Article  Google Scholar 

  37. Rigden, D. J., A. E. Jellyman, K. N. Frayn, and S. W. Coppack. Human adipose tissue glycogen levels and responses to carbohydrate feeding. Eur. J. Clin. Nutr. 44:689–692, 1990.

    Google Scholar 

  38. Rothman, D. L., R. G. Shulman, and G. I. Shulman. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89:1069–1075, 1992.

    Article  Google Scholar 

  39. Sadiq, F., D. G. Hazlerigg, and M. A. Lomax. Amino acids and insulin act additively to regulate components of the ubiquitin-proteasome pathway in C2C12 myotubes. BMC Mol. Biol. 8:23, 2007.

    Article  Google Scholar 

  40. Saggerson, E. D., and A. L. Greenbaum. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Biochem. J. 119:193–219, 1970.

    Google Scholar 

  41. Samra, J. S., E. J. Simpson, M. L. Clark, C. D. Forster, S. M. Humphreys, I. A. Macdonald, and K. N. Frayn. Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am. J. Physiol. 271:E834–E839, 1996.

    Google Scholar 

  42. Schweiger, M., R. Schreiber, G. Haemmerle, A. Lass, C. Fledelius, P. Jacobsen, H. Tornqvist, R. Zechner, and R. Zimmermann. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281:40236–40241, 2006.

    Article  Google Scholar 

  43. Serlie, M. J., J. H. de Haan, C. J. Tack, H. J. Verberne, M. T. Ackermans, A. Heerschap, and H. P. Sauerwein. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis. Diabetes 54:1277–1282, 2005.

    Article  Google Scholar 

  44. Shulman, R. G., and D. L. Rothman. Enzymatic phosphorylation of muscle glycogen synthase: a mechanism for maintenance of metabolic homeostasis. Proc. Natl Acad. Sci. USA. 93:7491–7495, 1996.

    Article  Google Scholar 

  45. Staples, J., and R. Suarez. Honeybee flight muscle phosphoglucose isomerase: matching enzyme capacities to flux requirements at a near-equilibrium reaction. J. Exp. Biol. 200:1247–1254, 1997.

    Google Scholar 

  46. Stralfors, P., and R. C. Honnor. Insulin-induced dephosphorylation of hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein kinase activity. Eur. J. Biochem. 182:379–385, 1989.

    Article  Google Scholar 

  47. Strawford, A., F. Antelo, M. Christiansen, and M. K. Hellerstein. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 286:E577–E588, 2004.

    Article  Google Scholar 

  48. Stumvoll, M., S. Jacob, H. G. Wahl, B. Hauer, K. Loblein, P. Grauer, R. Becker, M. Nielsen, W. Renn, and H. Haring. Suppression of systemic, intramuscular, and subcutaneous adipose tissue lipolysis by insulin in humans. J. Clin. Endocrinol. Metab. 85:3740–3745, 2000.

    Article  Google Scholar 

  49. Summers, L. K. Adipose tissue metabolism, diabetes and vascular disease—lessons from in vivo studies. Diab. Vasc. Dis. Res. 3:12–21, 2006.

    Article  Google Scholar 

  50. Syed, N. A., and R. L. Khandelwal. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol. Cell Biochem. 211:123–136, 2000.

    Article  Google Scholar 

  51. Sztalryd, C., G. Xu, H. Dorward, J. T. Tansey, J. A. Contreras, A. R. Kimmel, and C. Londos. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161:1093–1103, 2003.

    Article  Google Scholar 

  52. Tordjman, J., G. Chauvet, J. Quette, E. G. Beale, C. Forest, and B. Antoine. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J. Biol. Chem. 278:18785–18790, 2003.

    Article  Google Scholar 

  53. Way, J. M., W. W. Harrington, K. K. Brown, W. K. Gottschalk, S. S. Sundseth, T. A. Mansfield, R. K. Ramachandran, T. M. Willson, and S. A. Kliewer. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142:1269–1277, 2001.

    Article  Google Scholar 

  54. Xiang, S. Q., K. Cianflone, D. Kalant, and A. D. Sniderman. Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J. Lipid Res. 40:1655–1663, 1999.

    Google Scholar 

  55. Yang, Y. J., I. D. Hope, M. Ader, and R. N. Bergman. Insulin transport across capillaries is rate limiting for insulin action in dogs. J. Clin. Invest. 84:1620–1628, 1989.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (P50-GM-66309) from the National Institute of General Medical Sciences for developing a Center for Modeling Integrated Metabolic Systems at Case Western Reserve University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish C. Kalhan.

Additional information

Associate Editor Muhammad Zaman oversaw the review of this article.

Appendix 1: Kinetic Equations for the Metabolic Reactions

Appendix 1: Kinetic Equations for the Metabolic Reactions

1. Glycolysis I

\( {\text{GLC}} + {\text{ATP}} \to {\text{G6P}} + {\text{ADP}} \)

\( \phi_{{{\text{GLC}} \to {\text{G6P}}}} = V_{{{\text{GLC}} \to {\text{G6P}}}} \left[ {{\frac{{K_{{{\text{i,GLC}} \to {\text{G6P}}}} }}{{K_{{{\text{i,GLC}} \to {\text{G6P}}}} + C_{\text{G6P}} }}}} \right]\left[ {{\frac{{{\frac{{C_{\text{GLC}} C_{\text{ATP}} }}{{K_{{{\text{m,GLC}} \to {\text{G6P}}}} }}}}}{{1 + {\frac{{C_{\text{G6P}} }}{{K_{{{\text{i,GLC}} \to {\text{G6P}}}} }}} + {\frac{{C_{\text{GLC}} C_{\text{ATP}} }}{{K_{{{\text{m,GLC}} \to {\text{G6P}}}} }}}}}}} \right] \)

2. Glycolysis II

\( {\text{G6P}} \leftrightarrow {\text{F6P}} \)

\( \phi_{{{\text{G6P}} \leftrightarrow {\text{F6P}}}} = \left[ {{\frac{{V_{{{\text{f,G6P}} \leftrightarrow {\text{F6P}}}} {\frac{{C_{\text{G6P}} }}{{K_{\text{G6P}} }}} - V_{{{\text{b,G6P}} \leftrightarrow {\text{F6P}}}} {\frac{{C_{\text{F6P}} }}{{K_{\text{F6P}} }}}}}{{1 + {\frac{{C_{\text{G6P}} }}{{K_{\text{G6P}} }}} + {\frac{{C_{\text{F6P}} }}{{K_{\text{F6P}} }}}}}}} \right] \)

3. Glycolysis III

\( {\text{F6P}} + {\text{ATP}} \to 2 {\text{GAP1}} + {\text{ADP}} \)

\( \phi_{{{\text{F6P}} \to {\text{GAP1}} }} = V_{{{\text{F6P}} \to {\text{GAP1}} }} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}{{\left[ {\mu_{{{\text{F6P}} \to {\text{GAP1}} }}^{ - } } \right]^{2} + \left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}}} \right]\left[ {{\frac{{{\frac{{C_{\text{F6P}} }}{{K_{{{\text{m,F6P}} \to {\text{GAP1}} }} }}}}}{{1 + {\frac{{C_{\text{F6P}} }}{{K_{{{\text{m,F6P}} \to {\text{GAP1}} }} }}}}}}} \right] \)

4. Glycolysis IV

\( {\text{GAP1}} + {\text{Pi}} + {\text{NAD}}^{ + } + 2{\text{ADP}} \to {\text{PYR}} + {\text{NADH + 2ATP}} \)

\( \phi_{{{\text{GAP1}} \to {\text{PYR}}}} = V_{{{\text{GAP1}} \to {\text{PYR}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NAD}} }}{{C_{\text{NADH}} }}}} \right]}}{{\left[ {\nu_{{{\text{GAP1}} \to {\text{PYR}}}}^{ - } } \right] + \left[ {{\frac{{C_{\text{NAD}} }}{{C_{\text{NADH}} }}}} \right]}}}} \right]\left[ {{\frac{{\left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}{{\left[ {\mu_{{{\text{GAP1}} \to {\text{PYR}}}}^{ - } } \right]^{2} + \left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}}} \right]\left[ {{\frac{{{\frac{{C_{{\text{GAP1}}} C_{\text{Pi}} }}{{K_{{\text{m,GAP1} \to \text{PYR}}} }}}}}{{1 + {\frac{{C_{{\text{GAP1}}} C_{\text{Pi}} }}{{K_{{m,\text{GAP1} \to \text{PYR}}} }}}}}}} \right] \)

5. Pyruvate reduction

\( {\text{PYR}} + {\text{NADH}} \leftrightarrow {\text{LAC}} + {\text{NAD}}^{ + } \)

\( \phi_{{{\text{PYR}} \leftrightarrow {\text{LAC}}}} = \left[ {{\frac{{V_{{{\text{f,PYR}} \leftrightarrow {\text{LAC}}}} {\frac{{C_{\text{PYR}} C_{\text{NADH}} }}{{K_{{{\text{f,PYR}} \leftrightarrow {\text{LAC}}}} }}} - V_{{{\text{b,PYR}} \leftrightarrow {\text{LAC}}}} {\frac{{C_{\text{LAC}} C_{\text{NAD}} }}{{K_{{{\text{b,PYR}} \leftrightarrow {\text{LAC}}}} }}}}}{{1 + {\frac{{C_{\text{PYR}} C_{\text{NADH}} }}{{K_{{{\text{f,PYR}} \leftrightarrow {\text{LAC}}}} }}} + {\frac{{C_{\text{LAC}} C_{\text{NAD}} }}{{K_{{{\text{b,PYR}} \leftrightarrow {\text{LAC}}}} }}}}}}} \right] \)

6. Glycogen synthesis

\( {\text{G6P}} + {\text{ATP}} \to {\text{GLY}} + {\text{ADP}} + 2{\text{P}}_{\text{i}} \)

\( \phi_{{{\text{G6P}} \to {\text{GLY}}}} = V_{{{\text{G6P}} \to {\text{GLY}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}{{[\mu_{{{\text{G6P}} \to {\text{GLY}}}}^{ + } ] + \left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{G6P}} }}{{K_{{{\text{m,G6P}} \to {\text{GLY}}}} }}}}}{{1 + {\frac{{C_{\text{G6P}} }}{{K_{{{\text{m,G6P}} \to {\text{GLY}}}} }}}}}}} \right] \)

7. Glycogen phosphorylation

\( {\text{GLY + P}}_{\text{i}} \to {\text{G6P}} \)

\( \phi_{{{\text{GLY}} \to {\text{G6P}}}} = V_{{{\text{GLY}} \to {\text{G6P}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}{{\left[ {\mu_{{{\text{GLY}} \to {\text{G6P}}}}^{ - } } \right]^{2} + \left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]^{2} }}}} \right]\left[ {{\frac{{{\frac{{C_{\text{GLY}} C_{\text{Pi}} }}{{K_{{{\text{m,GLY}} \to {\text{G6P}}}} }}}}}{{1 + {\frac{{C_{\text{GLY}} C_{\text{Pi}} }}{{K_{{{\text{m,GLY}} \to {\text{G6P}}}} }}}}}}} \right] \)

8. Pentose phosphate shunt I

\( {\text{G6P}} + 2{\text{NADP}} + \to {\text{R5P}} + 2{\text{NADPH}} + {\text{CO}}_{2} \)

\( \phi_{{{\text{G6P}} \to {\text{R5P}}}} = V_{{{\text{G6P}} \to {\text{R5P}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NADP + }} }}{{C_{\text{NADPH}} }}}} \right]}}{{[\eta_{{{\text{G6P}} \to {\text{R5P}}}}^{ - } ] + \left[ {{\frac{{C_{\text{NADP + }} }}{{C_{\text{NADPH}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{G6P}} }}{{K_{{{\text{m,G6P}} \to {\text{R5P}}}} }}}}}{{1 + {\frac{{C_{\text{G6P}} }}{{K_{{{\text{m,G6P}} \to {\text{R5P}}}} }}}}}}} \right] \)

9. Pentose phosphate shunt II

\( 3 {\text{R5P}} \to 2{\text{F6P}} + {\text{GAP1}} \)

\( \phi_{{{\text{R5P}} \to {\text{F6P - GAP1}} }} = V_{{{\text{R5P}} \to {\text{F6P - GAP1}} }} \left[ {{\frac{{{\frac{{C_{\text{R5P}} }}{{K_{{{\text{m,R5P}} \to {\text{F6P - GAP1}} }} }}}}}{{1 + {\frac{{C_{\text{R5P}} }}{{K_{{{\text{m,R5P}} \to {\text{F6P - GAP1}} }} }}}}}}} \right] \)

10. GAP reduction I

\( {\text{GAP1}} + {\text{NADH}} \leftrightarrow {\text{G3P1}} + {\text{NAD}}^{ + } \)

\( \phi_{{{\text{GAP1}} \leftrightarrow {\text{G3P1}} }} = \left[ {{\frac{{V_{{{\text{f,GAP1}} \leftrightarrow {\text{G3P1}} }} {\frac{{C_{{{\text{GAP1}} }} C_{\text{NADH}} }}{{K_{{{\text{f,GAP1}} \leftrightarrow {\text{G3P1}}}} }}} - V_{{{\text{b,GAP1}} \leftrightarrow {\text{G3P1}} }} {\frac{{C_{{{\text{G3P1}} }} C_{\text{NAD}} }}{{K_{{{\text{b,GAP1}} \leftrightarrow {\text{G3P1}} }} }}}}}{{1 + {\frac{{C_{{{\text{GAP1}} }} C_{\text{NADH}} }}{{K_{{{\text{f,GAP1}} \leftrightarrow {\text{G3P1}} }} }}} + {\frac{{C_{{{\text{G3P1}} }} C_{\text{NAD}} }}{{K_{{{\text{b,GAP1}} \leftrightarrow {\text{G3P1}} }} }}}}}}} \right] \)

11. Glyceroneogenesis

\( {\text{PYR}} + 3{\text{ATP + NADH}} \to {\text{GAP2}} + 3{\text{ADP + NAD}}^{ + } + 2{\text{P}}_{\text{i}} \)

\( \phi_{{{\text{PYR}} \to {\text{GAP2}} }} = V_{{{\text{PYR}} \to {\text{GAP2}} }} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NADH}} }}{{C_{\text{NAD + }} }}}} \right]}}{{\nu_{{{\text{PYR}} \to {\text{GAP2}} }}^{ + } + \left[ {{\frac{{C_{\text{NADH}} }}{{C_{\text{NAD + }} }}}} \right]}}}} \right]\left[ {{\frac{{\left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}{{[\mu_{{{\text{PYR}} \to {\text{GAP2}} }}^{ + } ] + \left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{PYR}} }}{{K_{{{\text{m,PYR}} \to {\text{GAP2}} }} }}}}}{{1 + {\frac{{C_{\text{PYR}} }}{{K_{{{\text{m,PYR}} \to {\text{GAP2}} }} }}}}}}} \right] \)

12. GAP reduction II

\( {\text{GAP2}} + {\text{NADH}} \leftrightarrow {\text{G3P2}} + {\text{NAD}}^{ + } \)

\( \phi_{{{\text{GAP2}} \leftrightarrow {\text{G3P2}} }} = \left[ {{\frac{{V_{{{\text{f,GAP2}} \leftrightarrow {\text{G3P2}} }} {\frac{{C_{{{\text{GAP2}} }} C_{\text{NADH}} }}{{K_{{{\text{f,GAP2}} \leftrightarrow {\text{G3P2}} }} }}} - V_{{{\text{b,GAP2}} \leftrightarrow {\text{G3P2}} }} {\frac{{C_{{{\text{G3P2}} }} C_{\text{NAD}} }}{{K_{{{\text{b,GAP2}} \leftrightarrow {\text{G3P2}} }} }}}}}{{1 + {\frac{{C_{{{\text{GAP2}} }} C_{\text{NADH}} }}{{K_{{{\text{f,GAP2}} \leftrightarrow {\text{G3P2}} }} }}} + {\frac{{C_{{{\text{G3P2}} }} C_{\text{NAD}} }}{{K_{{{\text{b,GAP2}} \leftrightarrow {\text{G3P2}} }} }}}}}}} \right] \)

13. Glycerol phosphorylation

\( {\text{GLR + ATP}} \to {\text{G3P2}} {\text{ + ADP}} \)

\( \phi_{{{\text{GLR}} \to {\text{G3P2}} }} = V_{{{\text{GLR}} \to {\text{G3P2}} }} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}{{\left[ {\mu_{{{\text{GLR}} \to {\text{G3P2}} }}^{ + } } \right] + \left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{{{\text{GLR}} }} }}{{K_{{{\text{m,GLR}} \to {\text{G3P2}} }} }}}}}{{1 + {\frac{{C_{\text{GLR}} }}{{K_{{{\text{m,GLR}} \to {\text{G3P2}} }} }}}}}}} \right] \)

14. Alanine utilization

\( {\text{ALA}} \to {\text{PYR}} \)

\( \phi_{{{\text{ALA}} \to {\text{PYR}}}} = V_{{{\text{ALA}} \to {\text{PYR}}}} \left[ {{\frac{{{\frac{{C_{\text{ALA}} }}{{K_{{{\text{m,ALA}} \to {\text{PYR}}}} }}}}}{{1 + {\frac{{C_{\text{ALA}} }}{{K_{{{\text{m,ALA}} \to {\text{PYR}}}} }}}}}}} \right] \)

Alanine represents the amino acid pool.

15. Alanine formation

\( {\text{PYR}} \to {\text{ALA}} \)

\( \phi_{{{\text{PYR}} \to {\text{ALA}}}} = V_{{{\text{PYR}} \to {\text{ALA}}}} \left[ {{\frac{{{\frac{{C_{\text{PYR}} }}{{K_{{{\text{m,PYR}} \to {\text{ALA}}}} }}}}}{{1 + {\frac{{C_{\text{PYR}} }}{{K_{{{\text{m,PYR}} \to {\text{ALA}}}} }}}}}}} \right] \)

16. Proteolysis

\( {\text{Proteins}} \to {\text{ALA}} \)

\( \phi_{\text{Proteolysis}} = V_{\text{Proteolysis}} \)

17. Protein synthesis

\( {\text{ALA}} \to {\text{Proteins}} \)

\( \phi_{\text{Protein Synthesis}} = V_{\text{Protein Synthesis}} \)

18. Pyruvate oxidation

\( {\text{PYR}} + {\text{CoA}} + {\text{NAD}}^{ + } \to {\text{ACoA}} + {\text{NADH}} + {\text{CO}}_{ 2} \)

\( \phi_{{{\text{PYR}} \to {\text{ACoA}}}} = V_{{{\text{PYR}} \to {\text{ACoA}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NAD}} }}{{C_{\text{NADH}} }}}} \right]}}{{\left[ {\nu_{{{\text{PYR}} \to {\text{ACoA}}}}^{ - } } \right] + \left[ {{\frac{{C_{\text{NAD}} }}{{C_{\text{NADH}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{PYR}} C_{\text{CoA}} }}{{K_{{{\text{m,PYR}} \to {\text{ACoA}}}} }}}}}{{1 + {\frac{{C_{\text{ACoA}} }}{{K_{{{\text{i,PYR}} \to {\text{ACoA}}}} }}} + {\frac{{C_{\text{PYR}} C_{\text{CoA}} }}{{K_{{{\text{m,PYR}} \to {\text{ACoA}}}} }}}}}}} \right] \)

19. Fatty Acyl CoA synthesis

\( {\text{FFA}} + {\text{CoA}} + 2 {\text{ATP}} \to {\text{FAC}} + 2 {\text{ ADP}} + 2 {\text{ Pi}} \)

\( \phi_{{{\text{FFA}} \to {\text{FAC}}}} = V_{{{\text{FFA}} \to {\text{FAC}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}{{\left[ {\mu_{{{\text{FFA}} \to {\text{FAC}}}}^{ + } } \right] + \left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{FFA}} C_{\text{CoA}} }}{{K_{{{\text{m,FFA}} \to {\text{FAC}}}} }}}}}{{1 + {\frac{{C_{\text{FFA}} C_{\text{CoA}} }}{{K_{{{\text{m,FFA}} \to {\text{FAC}}}} }}}}}}} \right] \)

20. Fatty acid oxidation

\( {\text{FAC}} + 7{\text{CoA + 14NAD}}^{ + } \to 8{\text{ACoA}} + 1 4 {\text{NADH}} \)

\( \phi_{{{\text{FAC}} \to {\text{ACoA}}}} = V_{{{\text{FAC}} \to {\text{ACoA}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NAD + }} }}{{C_{\text{NADH}} }}}} \right]}}{{\left[ {\nu_{{{\text{FAC}} \to {\text{ACoA}}}}^{ - } } \right] + \left[ {{\frac{{C_{\text{NAD + }} }}{{C_{\text{NADH}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{FAC}} C_{\text{CoA}} }}{{K_{{{\text{m,FAC}} \to {\text{ACoA}}}} }}}}}{{1 + {\frac{{C_{\text{ACoA}} }}{{K_{{{\text{i,FAC}} \to {\text{ACoA}}}} }}} + {\frac{{C_{\text{FAC}} C_{\text{CoA}} }}{{K_{{{\text{m,FAC}} \to {\text{ACoA}}}} }}}}}}} \right] \)

21. TG breakdown by ATGL

\( {\text{TG}} \to {\text{DG}} + {\text{FFA}} \)

\( \phi_{{{\text{TG}} \to {\text{DG}}}} = V_{{{\text{TG}} \to {\text{DG,ATGL}}}} \)

22. TG breakdown by HSL

\( {\text{TG}} \to {\text{DG}} + {\text{FFA}} \)

\( \phi_{{{\text{TG}} \to {\text{DG}}}} = V_{{{\text{TG}} \to {\text{DG,HSL}}}} \)

23. DG breakdown by HSL

\( {\text{DG}} \to {\text{MG}} + {\text{FFA}} \)

\( \phi_{{{\text{DG}} \to {\text{MG}}}} = V_{{{\text{DG}} \to {\text{MG,HSL}}}} \left[ {{\frac{{{\frac{{C_{\text{DG}} }}{{K_{{{\text{m,DG}} \to {\text{MG}}}} }}}}}{{1 + {\frac{{C_{\text{DG}} }}{{K_{{{\text{m,DG}} \to {\text{MG}}}} }}}}}}} \right] \)

24. MG breakdown by HSL

\( {\text{MG}} \to {\text{GLR}} + {\text{FFA}} \)

\( \phi_{{{\text{MG}} \to {\text{GLR}}}} = V_{{{\text{MG}} \to {\text{GLR,HSL}}}} \left[ {{\frac{{{\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG}} \to {\text{GLR}}}} }}}}}{{1 + {\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG}} \to {\text{GLR}}}} }}}}}}} \right] \)

25. MG breakdown by MGL

\( {\text{MG}} \to {\text{GLR}} + {\text{FFA}} \)

\( \phi_{{{\text{MG}} \to {\text{GLR}}}} = V_{{{\text{MG}} \to {\text{GLR,MGL}}}} \left[ {{\frac{{{\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG}} \to {\text{GLR}}}} }}}}}{{1 + {\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG}} \to {\text{GLR}}}} }}}}}}} \right] \)

26. Lipogenesis

\( 8 {\text{ACoA + 14NADPH + 7ATP}} \to {\text{FFA}} + 8{\text{CoA}} + 14{\text{NADP + 7ADP + 7P}}_{\text{i}} \)

\( \phi_{{{\text{ACoA}} \to {\text{FFA}}}} = V_{{{\text{ACoA}} \to {\text{FFA}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}{{\left[ {\mu_{{{\text{ACoA}} \to {\text{FFA}}}}^{ + } } \right] + \left[ {{\frac{{C_{\text{ATP}} }}{{C_{\text{ADP}} }}}} \right]}}}} \right]\left[ {{\frac{{\left[ {{\frac{{C_{\text{NADPH}} }}{{C_{\text{NADP + }} }}}} \right]}}{{\left[ {\eta_{{{\text{ACoA}} \to {\text{FFA}}}}^{ + } } \right] + \left[ {{\frac{{C_{\text{NADPH}} }}{{C_{\text{NADP + }} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{ACoA}} }}{{K_{{{\text{m,ACoA}} \to {\text{FFA}}}} }}}}}{{1 + {\frac{{C_{\text{ACoA}} }}{{K_{{{\text{m,ACoA}} \to {\text{FFA}}}} }}}}}}} \right] \)

27. DG synthesis I

\( {\text{G3P1}} + 2{\text{FAC}} \to {\text{DG}} + 2{\text{CoA + Pi}} \)

\( \phi_{{{\text{G3P1}} {\text{ - FAC}} \to {\text{DG}}}} = V_{{{\text{G3P1}} {\text{ - FAC}} \to {\text{DG}}}} \left[ {{\frac{{{\frac{{C_{{{\text{G3P1}} }} C_{\text{FAC}} }}{{K_{{{\text{m,G3P1}} {\text{ - FAC}} \to {\text{DG}}}} }}}}}{{1 + {\frac{{C_{{{\text{G3P1}} }} C_{\text{FAC}} }}{{K_{{{\text{m,G3P1}} {\text{ - FAC}} \to {\text{DG}}}} }}}}}}} \right] \)

28. DG synthesis II

\( {\text{G3P2}} + 2{\text{FAC}} \to {\text{DG}} + 2{\text{CoA + Pi}} \)

\( \phi_{{{\text{G3P2}} {\text{ - FAC}} \to {\text{DG}}}} = V_{{{\text{G3P2}} {\text{ - FAC}} \to {\text{DG}}}} \left[ {{\frac{{{\frac{{C_{{{\text{G3P2}} }} C_{\text{FAC}} }}{{K_{{{\text{m,G3P2}} {\text{ - FAC}} \to {\text{DG}}}} }}}}}{{1 + {\frac{{C_{{{\text{G3P2}} }} C_{\text{FAC}} }}{{K_{{{\text{m,G3P2}} {\text{ - FAC}} \to {\text{DG}}}} }}}}}}} \right] \)

29. TG synthesis

\( {\text{DG}} + {\text{FAC}} \to {\text{TG}} + {\text{CoA}} \)

\( \phi_{{{\text{DG - FAC}} \to {\text{TG}}}} = V_{{{\text{DG - FAC}} \to {\text{TG}}}} \left[ {{\frac{{{\frac{{C_{\text{DG}} C_{\text{FAC}} }}{{K_{{{\text{m,DG - FAC}} \to {\text{TG}}}} }}}}}{{1 + {\frac{{C_{\text{DG}} C_{\text{FAC}} }}{{K_{{{\text{m,DG - FAC}} \to {\text{TG}}}} }}}}}}} \right] \)

30. Transacylation I

\( {\text{DG}} + {\text{DG}} \to {\text{TG}} + {\text{MG}} \)

\( \phi_{{{\text{DG - DG}} \to {\text{TG - MG}}}} = V_{{{\text{DG - DG}} \to {\text{TG - MG}}}} \left[ {{\frac{{{\frac{{C_{\text{DG}} }}{{K_{{{\text{m,DG - DG}} \to {\text{TG - MG}}}} }}}}}{{1 + {\frac{{C_{\text{DG}} }}{{K_{{{\text{m,DG - DG}} \to {\text{TG - MG}}}} }}}}}}} \right] \)

31. Transacylation II

\( {\text{MG}} + {\text{MG}} \to {\text{DG}} + {\text{GLR}} \)

\( \phi_{{{\text{MG - MG}} \to {\text{DG - GLR}}}} = V_{{{\text{MG - MG}} \to {\text{DG - GLR}}}} \left[ {{\frac{{{\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG - MG}} \to {\text{DG - GLR}}}} }}}}}{{1 + {\frac{{C_{\text{MG}} }}{{K_{{{\text{m,MG - MG}} \to {\text{DG - GLR}}}} }}}}}}} \right] \)

32. Transacylation III

\( {\text{MG}} + {\text{DG}} \to {\text{TG}} + {\text{GLR}} \)

\( \phi_{{{\text{MG - DG}} \to {\text{TG - GLR}}}} = V_{{{\text{MG - DG}} \to {\text{TG - GLR}}}} \left[ {{\frac{{{\frac{{C_{\text{MG}} C_{\text{DG}} }}{{K_{{{\text{m,MG - DG}} \to {\text{TG - GLR}}}} }}}}}{{1 + {\frac{{C_{\text{MG}} C_{\text{DG}} }}{{K_{{{\text{m,MG - DG}} \to {\text{TG - GLR}}}} }}}}}}} \right] \)

33. TCA cycle

\( A{\text{CoA}} + {\text{ADP + Pi + 4NAD}}^{ + } \to 2{\text{CO}}_{ 2} + {\text{CoA}} + {\text{ATP + 4NADH}} \)

\( \phi_{{{\text{ACoA}} \leftrightarrow {\text{CO}}_{ 2} }} = V_{{{\text{ACoA}} \to {\text{CO}}_{ 2} }} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NAD + }} }}{{C_{\text{NADH}} }}}} \right]}}{{\left[ {\nu_{{{\text{ACoA}} \to {\text{CO}}_{ 2} }}^{ - } } \right] + \left[ {{\frac{{C_{\text{NAD + }} }}{{C_{\text{NADH}} }}}} \right]}}}} \right]\left[ {{\frac{{\left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]}}{{\left[ {\mu_{{{\text{ACoA}} \to {\text{CO}}_{ 2} }}^{ - } } \right] + \left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{\text{ACoA}} C_{\text{Pi}} }}{{K_{{{\text{m,ACoA}} \to {\text{CO}}_{ 2} }} }}}}}{{1 + {\frac{{C_{\text{ACoA}} C_{\text{Pi}} }}{{K_{{{\text{m,ACoA}} \to {\text{CO}}_{ 2} }} }}}}}}} \right] \)

34. Oxidative phosphorylation

\( {\text{O}}_{ 2} + 6 {\text{ADP}} + 6 {\text{Pi}} + 2{\text{NADH}} \to 2 {\text{H}}_{ 2} {\text{O}} + 6{\text{ATP}} + 2{\text{NAD}}^{ + } \)

\( \phi_{{{\text{O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}} = V_{{{\text{O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}} \left[ {{\frac{{\left[ {{\frac{{C_{\text{NADH}} }}{{C_{\text{NAD + }} }}}} \right]}}{{\left[ {\nu_{{{\text{O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}}^{ + } } \right] + \left[ {{\frac{{C_{\text{NAD + }} }}{{C_{\text{NADH}} }}}} \right]}}}} \right]\left[ {{\frac{{\left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]}}{{\left[ {\mu_{{{\text{O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}}^{ - } } \right] + \left[ {{\frac{{C_{\text{ADP}} }}{{C_{\text{ATP}} }}}} \right]}}}} \right]\left[ {{\frac{{{\frac{{C_{{{\text{O}}_{ 2} }} C_{\text{Pi}} }}{{K_{{{\text{m,O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}} }}}}}{{1 + {\frac{{C_{{{\text{O}}_{ 2} }} C_{\text{Pi}} }}{{K_{{{\text{m,O}}_{ 2} \to {\text{H}}_{ 2} {\text{O}}}} }}}}}}} \right] \)

35. ATP hydrolysis

\( {\text{ATP}} \to {\text{ADP}} + {\text{Pi}} \)

\( \phi_{{{\text{ATP}} \to {\text{ADP}}}} = V_{{{\text{ATP}} \to {\text{ADP}}}} \left[ {{\frac{{{\frac{{C_{\text{ATP}} }}{{K_{{{\text{ATP}} \to {\text{ADP}}}} }}}}}{{1 + {\frac{{C_{\text{Pi}} C_{\text{ADP}} }}{{K_{{{\text{i,ATP}} \to {\text{ADP}}}} }}} + {\frac{{C_{\text{ATP}} }}{{K_{{{\text{m,ATP}} \to {\text{ADP}}}} }}}}}}} \right] \)

36. TG breakdown by LPL

\( {\text{TG}} \to {\text{GLR}} + 3{\text{FFA}} \)

\( \phi_{{{\text{TG}} \to {\text{FFA,LPL}}}} = V_{{{\text{TG}} \to {\text{FFA,LPL}}}} \left[ {{\frac{{{\frac{{C_{\text{TG}} }}{{K_{{{\text{m,TG}} \to {\text{FFA,LPL}}}} }}}}}{{1 + {\frac{{C_{\text{TG}} }}{{K_{{{\text{m,TG}} \to {\text{FFA,LPL}}}} }}}}}}} \right] \)

This is the only reaction in the blood compartment which is governed by LPL.

Rate coefficient is activated by adipose blood flow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Saidel, G.M. & Kalhan, S.C. Regulation of Adipose Tissue Metabolism in Humans: Analysis of Responses to the Hyperinsulinemic-Euglycemic Clamp Experiment. Cel. Mol. Bioeng. 4, 281–301 (2011). https://doi.org/10.1007/s12195-011-0162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0162-2

Keywords

Navigation