Skip to main content
Log in

Live Cell Imaging of Src/FAK Signaling by FRET

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The Src/FAK complex is involved in many signaling pathways and plays crucial roles in cell adhesion/migration. It becomes clear that the subcellular localization of Src and FAK is crucial for their activities and functions. In this article, we first overview the molecular mechanisms and functions of Src and FAK involved in cell adhesion/migration. We then introduce the development of genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) to visualize the activities of Src and FAK in live cells with high spatiotemporal resolutions. Different kinds of signal peptides targeting subcellular compartments are also discussed. FRET-based biosensors fused with these targeting signals peptides are further introduced to provide an overview on how these targeting signals can facilitate the localization of biosensors to continuously monitor the local activity of Src and FAK at subcellular compartments. In summary, genetically-encoded FRET biosensors integrated with subcellular compartment-targeting signals can provide powerful tools for the visualization of subcellular Src and FAK activities in live cells and advance our in-depth understanding of Src/FAK functions at different subcellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adachi, T., Y. Aonuma, S. Ito, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka. Osteocyte calcium signaling response to bone matrix deformation. J. Biomech. 42:2507–2512, 2009.

    Article  Google Scholar 

  2. Baillat, G., C. Siret, E. Delamarre, and J. Luis. Early adhesion induces interaction of FAK and Fyn in lipid domains and activates raft-dependent Akt signaling in SW480 colon cancer cells. Biochim. Biophys. Acta 1783:2323–2331, 2008.

    Article  Google Scholar 

  3. Belsches, A. P., M. D. Haskell, and S. J. Parsons. Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front. Biosci. 2:d501–d518, 1997.

    Google Scholar 

  4. Boggon, T. J., and M. J. Eck. Structure and regulation of Src family kinases. Oncogene 23:7918–7927, 2004.

    Article  Google Scholar 

  5. Botvinick, E. L., and Y. Wang. Laser tweezers in the study of mechanobiology in live cells. Methods Cell Biol. 82:497–523, 2007.

    Article  Google Scholar 

  6. Brown, M. T., and J. A. Cooper. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287:121–149, 1996.

    Google Scholar 

  7. Brugge, J. S., and R. L. Erikson. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348, 1977.

    Article  Google Scholar 

  8. Brunton, V. G., and M. C. Frame. Src and focal adhesion kinase as therapeutic targets in cancer. Curr. Opin. Pharmacol. 8:427–432, 2008.

    Article  Google Scholar 

  9. Cai, X., D. Lietha, D. F. Ceccarelli, A. V. Karginov, Z. Rajfur, K. Jacobson, K. M. Hahn, M. J. Eck, and M. D. Schaller. Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol. Cell Biol. 28:201–214, 2008.

    Article  Google Scholar 

  10. Calderwood, D. A. Integrin activation. J. Cell Sci. 117:657–666, 2004.

    Article  Google Scholar 

  11. Carragher, N. O., B. Levkau, R. Ross, and E. W. Raines. Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125(FAK), paxillin, and talin. J. Cell Biol. 147:619–630, 1999.

    Article  Google Scholar 

  12. Cary, L. A., R. A. Klinghoffer, C. Sachsenmaier, and J. A. Cooper. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Mol. Cell Biol. 22:2427–2440, 2002.

    Article  Google Scholar 

  13. Collett, M. S., J. S. Brugge, and R. L. Erikson. Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product. Cell 15:1363–1369, 1978.

    Article  Google Scholar 

  14. Cuevas, B. D., A. N. Abell, J. A. Witowsky, T. Yujiri, N. L. Johnson, K. Kesavan, M. Ware, P. L. Jones, S. A. Weed, R. L. DeBiasi, Y. Oka, K. L. Tyler, and G. L. Johnson. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J. 22:3346–3355, 2003.

    Article  Google Scholar 

  15. de Diesbach, P., T. Medts, S. Carpentier, L. D’Auria, P. Van Der Smissen, A. Platek, M. Mettlen, A. Caplanusi, M. F. van den Hove, D. Tyteca, and P. J. Courtoy. Differential subcellular membrane recruitment of Src may specify its downstream signalling. Exp. Cell Res. 314:1465–1479, 2008.

    Article  Google Scholar 

  16. Fincham, V. J., and M. C. Frame. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17:81–92, 1998.

    Article  Google Scholar 

  17. Fosbrink, M., N. N. Aye-Han, R. Cheong, A. Levchenko, and J. Zhang. Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc. Natl Acad. Sci. USA 107:5459–5464, 2010.

    Article  Google Scholar 

  18. Gao, X., and J. Zhang. Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains. Mol. Biol. Cell 19:4366–4373, 2008.

    Article  Google Scholar 

  19. Geiger, B., J. P. Spatz, and A. D. Bershadsky. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33, 2009.

    Article  Google Scholar 

  20. Giannone, G., P. Ronde, M. Gaire, J. Beaudouin, J. Haiech, J. Ellenberg, and K. Takeda. Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J. Biol. Chem. 279:28715–28723, 2004.

    Article  Google Scholar 

  21. Guan, J. L., and D. Shalloway. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358:690–692, 1992.

    Article  Google Scholar 

  22. Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Intracellular calcium waves in bone cell networks under single cell nanoindentation. Mol. Cell. Biomech. 3:95–107, 2006.

    Google Scholar 

  23. Hall, A., H. F. Paterson, P. Adamson, and A. J. Ridley. Cellular responses regulated by rho-related small GTP-binding proteins. Philos. Trans. R. Soc. B-Biol. Sci. 340:267–271, 1993.

    Article  Google Scholar 

  24. Hanks, S. K., L. Ryzhova, N. Y. Shin, and J. Brabek. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front. Biosci. 8:d982–d996, 2003.

    Article  Google Scholar 

  25. Hunger-Glaser, I., R. S. Fan, E. Perez-Salazar, and E. Rozengurt. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J. Cell Physiol. 200:213–222, 2004.

    Article  Google Scholar 

  26. Ilic, D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, and T. Yamamoto. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544, 1995.

    Article  Google Scholar 

  27. Izaguirre, G., L. Aguirre, Y. P. Hu, H. Y. Lee, D. D. Schlaepfer, B. J. Aneskievich, and B. Haimovich. The cytoskeletal/non-muscle isoform of alpha-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J. Biol. Chem. 276:28676–28685, 2001.

    Article  Google Scholar 

  28. Katz, B. Z., S. Miyamoto, H. Teramoto, M. Zohar, D. Krylov, C. Vinson, J. S. Gutkind, and K. M. Yamada. Direct transmembrane clustering and cytoplasmic dimerization of focal adhesion kinase initiates its tyrosine phosphorylation. Biochim. Biophys. Acta 1592:141–152, 2002.

    Google Scholar 

  29. Kim, T. J., J. Seong, M. Ouyang, J. Sun, S. Lu, J. P. Hong, N. Wang, and Y. Wang. Substrate rigidity regulates Ca2+ oscillation via RhoA pathway in stem cells. J. Cell. Physiol. 218:285–293, 2009.

    Article  Google Scholar 

  30. Kness, M., G. Wang, and M. H. Zaman. Robustness of integrin signaling network. J. Chem. Phys. 130:235103, 2009.

    Article  Google Scholar 

  31. Levinson, A. D., H. Oppermann, L. Levintow, H. E. Varmus, and J. M. Bishop. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572, 1978.

    Article  Google Scholar 

  32. Lietha, D., X. Cai, D. F. Ceccarelli, Y. Li, M. D. Schaller, and M. J. Eck. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129:1177–1187, 2007.

    Article  Google Scholar 

  33. Lipfert, L., B. Haimovich, M. D. Schaller, B. S. Cobb, J. T. Parsons, and J. S. Brugge. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol. 119:905–912, 1992.

    Article  Google Scholar 

  34. Lippincott-Schwartz, J., and G. H. Patterson. Development and use of fluorescent protein markers in living cells. Science 300:87–91, 2003.

    Article  Google Scholar 

  35. Lu, S., M. Ouyang, J. Seong, J. Zhang, S. Chien, and Y. Wang. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging. PLoS Comput. Biol. 4:e1000127, 2008.

    Article  MathSciNet  Google Scholar 

  36. Martin, G. S. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2:467–475, 2001.

    Article  Google Scholar 

  37. Mitra, S. K., and D. D. Schlaepfer. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18:516–523, 2006.

    Article  Google Scholar 

  38. Mitra, S. K., D. A. Hanson, and D. D. Schlaepfer. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6:56–68, 2005.

    Article  Google Scholar 

  39. Na, S., O. Collin, F. Chowdhury, B. Tay, M. Ouyang, Y. Wang, and N. Wang. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105:6626–6631, 2008.

    Article  Google Scholar 

  40. Ouyang, M., S. Lu, X. Y. Li, J. Xu, J. Seong, B. N. Giepmans, J. Y. Shyy, S. J. Weiss, and Y. Wang. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J. Biol. Chem. 283:17740–17748, 2008.

    Article  Google Scholar 

  41. Ouyang, M., J. Sun, S. Chien, and Y. Wang. Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc. Natl Acad. Sci. USA 105:14353–14358, 2008.

    Article  Google Scholar 

  42. Palazzo, A. F., C. H. Eng, D. D. Schlaepfer, E. E. Marcantonio, and G. G. Gundersen. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303:836–839, 2004.

    Article  Google Scholar 

  43. Papusheva, E., F. M. de Queiroz, J. Dalous, Y. Han, A. Esposito, E. A. Jares-Erijmanxa, T. M. Jovin, and G. Bunt. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J. Cell Sci. 122:656–666, 2009.

    Article  Google Scholar 

  44. Park, E. K., M. J. Park, S. H. Lee, Y. C. Li, J. Kim, J. S. Lee, J. W. Lee, S. K. Ye, J. W. Park, C. W. Kim, B. K. Park, and Y. N. Kim. Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization. J. Pathol. 218:337–349, 2009.

    Article  Google Scholar 

  45. Playford, M. P., and M. D. Schaller. The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946, 2004.

    Article  Google Scholar 

  46. Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. Cell migration: integrating signals from front to back. Science 302:1704–1709, 2003.

    Article  Google Scholar 

  47. Seong, J., S. Lu, M. Ouyang, H. Huang, J. Zhang, M. C. Frame, and Y. Wang. Visualization of Src activity at different compartments of the plasma membrane by FRET imaging. Chem. Biol. 16:48–57, 2009.

    Article  Google Scholar 

  48. Shvartsman, D. E., J. C. Donaldson, B. Diaz, O. Gutman, G. S. Martin, and Y. I. Henis. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. J. Cell Biol. 178:675–686, 2007.

    Article  Google Scholar 

  49. Thomas, S. M., and J. S. Brugge. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13:513–609, 1997.

    Article  Google Scholar 

  50. Ting, A. Y., K. H. Kain, R. L. Klemke, and R. Y. Tsien. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl Acad. Sci. USA 98:15003–15008, 2001.

    Article  Google Scholar 

  51. Ullman, K. S., M. A. Powers, and D. J. Forbes. Nuclear export receptors: from importin to exportin. Cell 90:967–970, 1997.

    Article  Google Scholar 

  52. Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040–1045, 2005.

    Article  Google Scholar 

  53. Wang, Y., J. Y. Shyy, and S. Chien. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10:1–38, 2008.

    Article  MATH  Google Scholar 

  54. Wei, Y., X. Yang, Q. Liu, J. A. Wilkins, and H. A. Chapman. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144:1285–1294, 1999.

    Article  Google Scholar 

  55. Wu, X., S. Suetsugu, L. A. Cooper, T. Takenawa, and J. L. Guan. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279:9565–9576, 2004.

    Article  Google Scholar 

  56. Xu, W., S. C. Harrison, and M. J. Eck. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602, 1997.

    Article  Google Scholar 

  57. Zacharias, D. A., J. D. Violin, A. C. Newton, and R. Y. Tsien. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916, 2002.

    Article  Google Scholar 

  58. Zhang, J., R. E. Campbell, A. Y. Ting, and R. Y. Tsien. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3:906–918, 2002.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from NIH HL098472, CA139272, NS063405, NSF CBET0846429, CMMI0800870 (Y.W.), and the Wallace H. Coulter Foundation and Beckman Laser Institute, Inc. (Y.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiao Wang.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seong, J., Lu, S. & Wang, Y. Live Cell Imaging of Src/FAK Signaling by FRET. Cel. Mol. Bioeng. 4, 138–147 (2011). https://doi.org/10.1007/s12195-011-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0161-3

Keywords

Navigation