Skip to main content

Advertisement

Log in

Single Molecule Detection of One, Two and Multiplex Proteins Involved in DNA/RNA Transaction

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cellular processes involve complex arrangement of proteins engaged in a multitude of reactions, yet in a highly coordinated manner. The level of complexity, however, makes it difficult to investigate the role played by the individual protein constituent. Data taken from the conventional bulk solution methods suffer from ensemble averaging effect in which information from individual molecules is masked. The single molecule detection method overcomes this limitation by offering unique tools for monitoring the activity of individual molecules in isolation and in real-time dynamics. Included in this review are recent articles of single molecule studies representing a diverse array of experimental platforms which demonstrate the power and spectrum of single molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bandwar, R. P., G. Q. Tang, and S. S. Patel. Sequential release of promoter contacts during transcription initiation to elongation transition. J. Mol. Biol. 360(2):466–483, 2006.

    Article  Google Scholar 

  2. Benkovic, S. J., A. M. Valentine, and F. Salinas. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70:181–208, 2001.

    Article  Google Scholar 

  3. Blinkova, A., et al. The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential. J. Bacteriol. 175(18):6018–6027, 1993.

    Google Scholar 

  4. Bochkareva, E., et al. Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J. 20(3):612–618, 2001.

    Article  Google Scholar 

  5. Bochkareva, E., et al. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21(7):1855–1863, 2002.

    Article  Google Scholar 

  6. Cai, L., et al. Structural characterization of human RPA sequential binding to single-stranded DNA using ssDNA as a molecular ruler. Biochemistry 46(28):8226–8233, 2007.

    Article  Google Scholar 

  7. Chung, S. H., and R. A. Kennedy. Forward-backward non-linear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40(1):71–86, 1991.

    Article  Google Scholar 

  8. Cui, S., et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell. 29(2):169–179, 2008.

    Article  Google Scholar 

  9. De Vlaminck, I., et al. Torsional regulation of hRPA-induced unwinding of double-stranded DNA. Nucleic Acids Res. 2010.

  10. Durniak, K. J., S. Bailey, and T. A. Steitz. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322(5901):553–557, 2008.

    Article  Google Scholar 

  11. Fanning, E., V. Klimovich, and A. R. Nager. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34(15):4126–4137, 2006.

    Article  Google Scholar 

  12. Gong, P., E. A. Esposito, and C. T. Martin. Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymeras. J. Biol. Chem. 279(43):44277–44285, 2004.

    Article  Google Scholar 

  13. Guo, Q., et al. Major conformational changes during T7RNAP transcription initiation coincide with, and are required for, promoter release. J. Mol. Biol. 353(2):256–270, 2005.

    Article  Google Scholar 

  14. Hamdan, S. M., et al. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457(7227):336–339, 2009.

    Article  Google Scholar 

  15. Hodges, C., et al. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325(5940):626–628, 2009.

    Article  Google Scholar 

  16. Hornung, V., et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997, 2006.

    Article  Google Scholar 

  17. Huang, B., et al. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5(12):1047–1052, 2008.

    Article  Google Scholar 

  18. Iftode, C., Y. Daniely, and J. A. Borowiec. Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34(3):141–180, 1999.

    Article  Google Scholar 

  19. Jin, J., et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat. Struct. Mol. Biol. 17(6):745–752, 2010.

    Article  Google Scholar 

  20. Johnson, A., and M. O’Donnell. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74:283–315, 2005.

    Article  Google Scholar 

  21. Joo, C., et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126(3):515–527, 2006.

    Article  MathSciNet  Google Scholar 

  22. Kim, C., and M. S. Wold. Recombinant human replication protein A binds to polynucleotides with low cooperativity. Biochemistry 34(6):2058–2064, 1995.

    Article  Google Scholar 

  23. Kim, S., C. M. Schroeder, and X. S. Xie. Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. J. Mol. Biol. 395(5):995–1006, 2010.

    Article  Google Scholar 

  24. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25(4):156–165, 2000.

    Article  Google Scholar 

  25. Kowalczykowski, S. C., et al. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58(3):401–465, 1994.

    Google Scholar 

  26. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63(4):751–813, 1999; (table of contents).

    MathSciNet  Google Scholar 

  27. Lao, Y., C. G. Lee, and M. S. Wold. Replication protein A interactions with DNA. 2. Characterization of double-stranded DNA-binding/helix-destabilization activities and the role of the zinc-finger domain in DNA interactions. Biochemistry 38(13):3974–3984, 1999.

    Article  Google Scholar 

  28. Leake, M. C., et al. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett. 535(1–3):55–60, 2003.

    Article  Google Scholar 

  29. Leake, M. C., et al. The elasticity of single titin molecules using a two-bead optical tweezers assay. Biophys. J. 87(2):1112–1135, 2004.

    Article  Google Scholar 

  30. Leake, M. C., et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109):355–358, 2006.

    Article  Google Scholar 

  31. Lee, J. B. DNA primase acts as a molecular brake in DNA replication. Nature 439(7076):621–624, 2006.

    Article  Google Scholar 

  32. Liu, C., and C. T. Martin. Promoter clearance by T7 RNA polymerase. Initial bubble collapse and transcript dissociation monitored by base analog fluorescence. J. Biol. Chem. 277(4):2725–2731, 2002.

    Article  Google Scholar 

  33. Lohman, T. M., and M. E. Ferrari. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63:527–570, 1994.

    Article  Google Scholar 

  34. Maier, B., D. Bensimon, and V. Croquette. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Nat. Acad. Sci. U.S.A. 97(22):12002–12007, 2000.

    Article  Google Scholar 

  35. McInerney, P., and M. O’Donnell. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J. Biol. Chem. 282(35):25903–25916, 2007.

    Article  Google Scholar 

  36. Mer, G., et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103(3):449–456, 2000.

    Article  Google Scholar 

  37. Myong, S., et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323(5917):1070–1074, 2009.

    Article  Google Scholar 

  38. Negroni, M., and H. Buc. Mechanisms of retroviral recombination. Annu. Rev. Genet. 35:275–302, 2001.

    Article  Google Scholar 

  39. O’Donnell, M. Replisome architecture and dynamics in Escherichia coli. J. Biol. Chem. 281(16):10653–10656, 2006.

    Article  Google Scholar 

  40. Pandey, M., et al. Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 462(7275):940–943, 2009.

    Article  Google Scholar 

  41. Pichlmair, A., et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001, 2006.

    Article  Google Scholar 

  42. Plank, M., G. H. Wadhams, and M. C. Leake. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr. Biol. (Camb) 1(10):602–612, 2009.

    Article  Google Scholar 

  43. Reyes-Lamothe, R., D. J. Sherratt, and M. C. Leake. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328(5977):498–501, 2010.

    Article  Google Scholar 

  44. Roca, A. I., and M. M. Cox. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56:129–223, 1997.

    Article  Google Scholar 

  45. Roda, R. H., et al. Role of the reverse transcriptase, nucleocapsid protein, and template structure in the two-step transfer mechanism in retroviral recombination. J. Biol. Chem. 278(34):31536–31546, 2003.

    Article  Google Scholar 

  46. Roy, R., et al. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461(7267):1092–1097, 2009.

    Article  Google Scholar 

  47. Sanborn, M. E., et al. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. J. Phys. Chem. B 111(37):11064–11074, 2007.

    Article  Google Scholar 

  48. Shereda, R. D., et al. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43(5):289–318, 2008.

    Article  Google Scholar 

  49. Shroff, H., H. White, and E. Betzig. Photoactivated localization microscopy (PALM) of adhesion complexes. Curr. Protoc. Cell Biol., 2008. Chapter 4: p. Unit 4 21.

  50. Shundrovsky, A. A single-molecule technique to study sequence-dependent transcription pausing. Biophys. J. 87(6):3945–3953, 2004.

    Article  Google Scholar 

  51. Smith, D. A. A quantitative method for the detection of edges in noisy time-series. Philos. Trans. R. Soc. B-Biol. Sci. 353(1378):1969–1981, 1998.

    Article  Google Scholar 

  52. Stano, N. M., et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435(7040):370–373, 2005.

    Article  Google Scholar 

  53. Tang, G. Q., and S. S. Patel. T7 RNA polymerase-induced bending of promoter DNA is coupled to DNA opening. Biochemistry 45(15):4936–4946, 2006.

    Article  Google Scholar 

  54. Tang, G. Q., et al. Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Nat. Acad. Sci. U.S.A. 106(52):22175–22180, 2009.

    Article  Google Scholar 

  55. Treuner, K., U. Ramsperger, and R. Knippers. Replication protein A induces the unwinding of long double-stranded DNA regions. J. Mol. Biol. 259(1):104–112, 1996.

    Article  Google Scholar 

  56. Wold, M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61–92, 1997.

    Article  Google Scholar 

  57. Wuite, G. J., et al. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404(6773):103–106, 2000.

    Article  Google Scholar 

  58. Yin, Y. W., and T. A. Steitz. Structural basis for the transitionfrom initiation to elongation transcription in T7 RNA polymerase. Science 298(5597):1387–1395, 2002.

    Article  Google Scholar 

  59. Yoneyama, M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5(7):730–737, 2004.

    Article  Google Scholar 

  60. Zou, Y., et al. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell. Physiol. 208(2):267–273, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sua Myong.

Additional information

Associate Editor Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Myong, S. Single Molecule Detection of One, Two and Multiplex Proteins Involved in DNA/RNA Transaction. Cel. Mol. Bioeng. 4, 125–137 (2011). https://doi.org/10.1007/s12195-011-0159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0159-x

Keywords

Navigation