Skip to main content

Advertisement

Log in

In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The biomechanical properties of living cells depend on their molecular building blocks, and are important for maintaining structure and function in cells, the extracellular matrix, and tissues. These biomechanical properties and forces also shape and modify the cellular and extracellular structures under stress. While many studies have investigated the biomechanics of single cells or small populations of cells in culture, or the properties of organs and tissues, few studies have investigated the biomechanics of complex cell populations in vivo. With the use of advanced multiphoton microscopy to visualize in vivo cell populations in human skin, the biomechanical properties are investigated in a depth-dependent manner in the stratum corneum and epidermis using quasi-static mechanical deformations. A 2D elastic registration algorithm was used to analyze the images before and after deformation to determine displacements in different skin layers. In this feasibility study, the images and results from one human subject demonstrate the potential of the technique for revealing differences in elastic properties between the stratum corneum and the rest of the epidermis. This interrogational imaging methodology has the potential to enable a wide range of investigations for understanding how the biomechanical properties of in vivo cell populations influence function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
Figure 5

Similar content being viewed by others

References

  1. Agache, P., and P. Humbert. Measuring the Skin. Berlin: Springer-Verlag, pp. 96–98, 2004.

    Google Scholar 

  2. Bao, G., and S. Suresh. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–725, 2003.

    Article  Google Scholar 

  3. Canadas, P., V. M. Laurent, C. Oddou, D. Isabey, and S. Wendling. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J. Theor. Biol. 218:155–173, 2002.

    Article  MathSciNet  Google Scholar 

  4. Chen, J., B. Fabry, E. L. Schiffrin, and N. Wang. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol. Cell Physiol. 280:C1475–C1484, 2001.

    Google Scholar 

  5. Coughlin, M. F., and D. Stamenovic. A tensegrity structure with buckling compression elements: application to cell mechanics. Trans. ASME 64:480–486, 1997.

    Article  MATH  Google Scholar 

  6. Curiel-Lewandrowski, C., C. M. Williams, K. J. Swindells, S. R. Tahan, S. Astner, R. A. Frankenthaler, and S. González. Use of in vivo confocal microscopy in malignant melanoma: an aid in diagnosis and assessment of surgical and nonsurgical therapeutic approaches. Arch. Dermatol. 140:1127–1132, 2004.

    Article  Google Scholar 

  7. Dimitrow, E., M. Ziemer, M. J. Koehler, J. Norgauer, K. König, P. Elsner, and M. Kaatz. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 129:1752–1758, 2009.

    Article  Google Scholar 

  8. Diridollou, S., M. Berson, V. Vabre, D. Black, B. Karlsson, F. Auriol, J. M. Gregoire, C. Yvon, L. Vaillant, Y. Gall, and F. Patat. An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound. Med. Biol. 24:215–224, 1997.

    Article  Google Scholar 

  9. Ericson, M. B., C. Simonsson, S. Guldbrand, C. Ljungblad, J. Paoli, and M. Smedh. Two-photon laser-scanning fluorescence microscopy applied for studies of human skin. J. Biophoton. 1:320–330, 2008.

    Article  Google Scholar 

  10. Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160, 1989.

    Article  Google Scholar 

  11. Graf, B. W., Z. Jiang, H. Tu, and S. A. Boppart. Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. J. Biomed. Opt. 14:034019, 2009.

    Article  Google Scholar 

  12. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91:877–887, 2002.

    Article  Google Scholar 

  13. Koehler, M. J., K. König, P. Elsner, R. Bückle, and M. Kaatz. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett. 31:2879–2881, 2006.

    Article  Google Scholar 

  14. König, K., A. Ehlers, F. Stracke, and I. Riemann. In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol. Physiol. 19:78–88, 2006.

    Article  Google Scholar 

  15. König, K., and I. Riemann. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt. 8:432–439, 2003.

    Article  Google Scholar 

  16. Krehbiel, J., J. Lambros, J. Viator, and N. R. Sottos. Digital image correlation for improved detection of basal cell carcinoma. Exp. Mech. 2009. doi:10.1004/s11340-009-9324-8.

  17. Langer, K. On the anatomy and physiology of the skin I. The cleavability of the cutis. Br. J. Plast. Surg. 31:3–8, 1978.

    Article  Google Scholar 

  18. Liang, X., and S. A. Boppart. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57:953–959, 2010.

    Article  Google Scholar 

  19. Liang, X., B. W. Graf, and S. A. Boppart. Multimodality microscopy for imaging three-dimensional engineered and natural tissues. J. Biophoton. 2:643–655, 2009.

    Article  Google Scholar 

  20. Liu, Z., N. J. Sniadecki, and C. S. Chen. Mechanical forces in endothelial cells during firm adhesion and early transmigration of human monocytes. Cell. Mol. Bioeng. 3:50–59, 2010.

    Article  Google Scholar 

  21. Mann, C., and D. Leckband. Measuring traction forces in long-term cell cultures. Cell. Mol. Bioeng. 3:40–49, 2010.

    Article  Google Scholar 

  22. Marcellier, H., P. Vescovo, D. Varchon, P. Vacher, and P. Humbert. Optical analysis of displacement and strain fields on human skin. Skin Res. Technol. 7:246–253, 2001.

    Article  Google Scholar 

  23. Mathur, A. B., A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34:1545–1553, 2001.

    Article  Google Scholar 

  24. Pena, A., M. Strupler, T. Boulesteix, and M. Schanne-Klein. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt. Express 13:6268–6274, 2005.

    Article  Google Scholar 

  25. Rajadhyaksha, M., S. González, J. M. Zavislan, R. R. Anderson, and R. H. Webb. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J. Invest. Dermatol. 113:293–303, 1999.

    Article  Google Scholar 

  26. Sánchez Sorzano, C. Ó., P. Thévenaz, and M. Unser. Elastic registration of biological images using vector-Spline regularization. IEEE Trans. Biomed. Eng. 52:652–663, 2005.

    Article  Google Scholar 

  27. Satcher, R. L., and C. F. Dewey, Jr. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71:109–118, 1996.

    Article  Google Scholar 

  28. Staloff, I. A., E. Guan, S. Katz, M. Rafailovitch, A. Sokolov, and S. Sokolov. An in vivo study of the mechanical properties of facial skin and influence of aging using digital image speckle correlation. Skin Res. Technol. 14:127–134, 2008.

    Article  Google Scholar 

  29. Svoboda, K., and S. M. Block. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23:247–285, 1994.

    Article  Google Scholar 

  30. Verdier-Sevrain, S., and B. Frederic. Skin hydration: a review on its molecular mechanisms. J. Cosmet. Dermatol. 6:75–82, 2007.

    Article  Google Scholar 

  31. Vinegoni, C., T. S. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart. Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl. Phys. Lett. 88:053901, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Haohua Tu and Eric Chaney for their laboratory assistance and thank Dr. Steven G. Adie for insightful discussions. This work was supported in part by grants from the National Institutes of Health (R01 EB005221 and RC1 CA147096) and the National Science Foundation (CBET 08-52658). Additional information can be found at http://biophotonics.illinois.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart.

Additional information

Associate Editor Yingxiao Wang Peter J. Butler oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, X., Graf, B.W. & Boppart, S.A. In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin. Cel. Mol. Bioeng. 4, 231–238 (2011). https://doi.org/10.1007/s12195-010-0147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0147-6

Keywords

Navigation