Cellular and Molecular Bioengineering

, Volume 3, Issue 4, pp 345–360 | Cite as

Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies

  • Anusuya DasEmail author
  • Doug Lauffenburger
  • Harry Asada
  • Roger Kamm


Angiogenesis is crucial during many physiological processes, and is influenced by various biochemical and biomechanical factors. Two such factors: VEGF and Ang 1 are known to be critical and we demonstrate here their effect of sprout formation in an in vitro microfluidic system. Previously, we have developed a 3D hybrid, agent-field model where individual cells are modeled as sprout-forming agents in a matrix field. We have conducted microfluidic experiments under different concentrations of VEGF and Ang 1 and analyzed the difference in sprout number and sprout lengths using Decision Tree Analysis. We demonstrate that under specific transition probabilities, the model gives us capillary characteristics similar to those seen in experiments (R 2 ~ 0.82–0.99). Thus, this model can be used to cluster sprout morphology as a function of various influencing factors and, within bounds, predict if a certain growth factor will affect migration or proliferation as it impacts sprout morphology


Angiogenesis Capillary characteristics Microfluidics 



We would like to thank Wahleed Farhat for designing the microfluidic device wafers. We would like to acknowledge NSF-EFRI grant# 0735997 and the Singapore-MIT Alliance for Research and Technology for funding.

Supplementary material

12195_2010_146_MOESM1_ESM.doc (762 kb)
Supplementary material 1 (DOC 762 kb)


  1. 1.
    Adams, R. H., and K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8:464–478, 2007.CrossRefGoogle Scholar
  2. 2.
    Bogdanovic, E., V. Nguyen, and D. J. Dumont. Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor internalization. J. Cell Sci. 119:3551–3560, 2006.CrossRefGoogle Scholar
  3. 3.
    Brekken, R. A., and P. E. Thorpe. Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res. 21(6B):4221–4229, 2001.Google Scholar
  4. 4.
    Cebe Suarez, S., M. Pieren, L. Cariolato, S. Arn, U. Hoffmann, A. Bogucki, C. Manlius, J. Wood, and K. Ballmer-Hofer. A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell. Mol. Life Sci. 63(17):2067–2077, 2006.CrossRefGoogle Scholar
  5. 5.
    Chung, B., L. Flanagan, S. Rhee, P. Schwarz, A. Lee, E. Monuki, and N. Jeon. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab. Chip. 5(4):401–406, 2005.CrossRefGoogle Scholar
  6. 6.
    Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab. Chip. 9(2):269–275, 2009.CrossRefGoogle Scholar
  7. 7.
    Das, A., H. Asada, D. Lauffenburger, and R. D. Kamm. A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos. Trans. A Math. Phys. Eng. Sci. 368(1921):2937–2960, 2010.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Davis, S., T. H. Aldrich, P. F. Jones, A. Acheson, D. L. Compton, V. Jain, T. E. Ryan, J. Bruno, C. Radziejewski, P. C. Maisonpierre, and G. D. Yancopoulos. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7):1161–1169, 1996.CrossRefGoogle Scholar
  9. 9.
    Folkman, J., and Y. Shing. Angiogenesis. J. Biol. Chem. 267(16):10931–10934, 1992.Google Scholar
  10. 10.
    Frisk, T., S. Rydholm, T. Liebmann, H. Svahn, G. Stemme, and H. Brismar. A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 28:4705–4712, 2007.CrossRefGoogle Scholar
  11. 11.
    Garcia-Cardeña, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl Acad. Sci. U.S.A. 98:4478–4485, 2001.CrossRefGoogle Scholar
  12. 12.
    Gavard, J., V. Patel, and J. S. Gutkind. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev. Cell 14:25–36, 2008.CrossRefGoogle Scholar
  13. 13.
    Gengrinovitch, S., S. M. Greenberg, T. Cohen, et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J. Biol. Chem. 270:15059–15065, 1995.CrossRefGoogle Scholar
  14. 14.
    Gomez-Sjoberg, R., A. Leyrat, D. Pirone, C. Chen, and S. Quake. Versatile, fully automated, microfluidic cell culture system. Anal Chem. 79:8557–8563, 2007.CrossRefGoogle Scholar
  15. 15.
    Gu, W., X. Zhu, N. Futai, B. Cho, and S. Takayama. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl Acad. Sci. U.S.A. 101(45):15861–15866, 2004.CrossRefGoogle Scholar
  16. 16.
    Hayes, A. J., W. Q. Huang, J. Mallah, D. Yang, M. E. Lippman, and L. Y. Li. Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc. Res. 58(3):224–237, 1999.CrossRefGoogle Scholar
  17. 17.
    Helm, C. L., M. E. Fleury, A. H. Zisch, F. Boschetti, and M. A. Swartz. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl Acad. Sci. U.S.A. 102(44):15779–15784, 2005.CrossRefGoogle Scholar
  18. 18.
    Hernández Vera, R., E. Genové, L. Alvarez, S. Borrós, R. Kamm, D. Lauffenburger, and C. E. Semino. Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng. Part A 15(1):175–185, 2009.CrossRefGoogle Scholar
  19. 19.
    Hua, F., S. Hautaniemi, R. Yokoo, D. A. Lauffenburger. Integrated mechanistic and data-driven modelling for multivariate analysis of signaling pathways. J. R. Soc. Interface 3(9):515–526, 2006.CrossRefGoogle Scholar
  20. 20.
    Huang, S., and D. Ingber. Shape-dependent control of cell growth, differentiation, apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261:91–103, 2000.CrossRefGoogle Scholar
  21. 21.
    Jeon, N. L., H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8):826–830, 2002.Google Scholar
  22. 22.
    Jones, M. K., M. Tomikawa, B. Mohajer, and A. S. Tarnawski. Gastrointestinal mucosal regeneration: role of growth factors. Front Biosci. 15(4):D303–D309, 1999.Google Scholar
  23. 23.
    Jośko, J., B. Gwóźdź, H. Jedrzejowska-Szypułka, and S. Hendryk. Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med. Sci. Monit. 6(5):1047–1052, 2000.Google Scholar
  24. 24.
    Koblizek, T. I., C. Weiss, G. D. Yancopoulos, U. Deutsch, and W. Risau. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8(9):529–532, 1998.CrossRefGoogle Scholar
  25. 25.
    Kothapalli, C. R., S. de Valence, J. E. Van Veen, S. Chung, F. B. Gertler, and R. D. Kamm. A high-throughput microfluidic assay to study axonal response to growth factor gradients. Lab. Chip. (in review).Google Scholar
  26. 26.
    Kwak, H. J., J. N. So, S. J. Lee, I. Kim, and G. Y. Koh. Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett. 448(2–3):249–253, 1999.CrossRefGoogle Scholar
  27. 27.
    Li, X., M. Stankovic, C. S. Bonder, et al. Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1. Blood 111:3489–3497, 2008.CrossRefGoogle Scholar
  28. 28.
    Maione, T. E., G. S. Gray, and J. Petro. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247:77–79, 1990.CrossRefGoogle Scholar
  29. 29.
    Nakatsu, M., C. A. R. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Pérez-del-Pulgar, P. M. Carpenter, and C. C. W. Hughesa. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66:102–112, 2003.CrossRefGoogle Scholar
  30. 30.
    Saadi, W., S. Rhee, F. Lin, B. Vahidi, B. Chung, and N. Jeon. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5):627–635, 2007.CrossRefGoogle Scholar
  31. 31.
    Slungaard, A. Platelet factor 4: a chemokine enigma. Int. J. Biochem. Cell Biol. 37(6):1162–1167, 2005.CrossRefGoogle Scholar
  32. 32.
    Sudo, R., S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, and R. D. Kamm. Transport-mediated angiogenesis in 3D epithelial coculture. FASEB J. 23(7):2155–2164, 2009.CrossRefGoogle Scholar
  33. 33.
    Teichert-Kuliszewska, K., P. C. Maisonpierre, N. Jones, A. I. Campbell, Z. Master, M. P. Bendeck, K. Alitalo, D. J. Dumont, G. D. Yancopoulos, and D. J. Stewart. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc. Res. 49(3):659–670, 2001.CrossRefGoogle Scholar
  34. 34.
    Thomas, M., and H. G. Augustin. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12(2):125–37, 2009. Epub 2009 May 16.Google Scholar
  35. 35.
    Tourovskaia, A., X. Figueroa-Masot, and A. Folch. Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip. 5(1):14–19, 2005.CrossRefGoogle Scholar
  36. 36.
    Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab. Chip. 8(9):1468–1477, 2008.CrossRefGoogle Scholar
  37. 37.
    von Hundelshausen, P., F. Petersen, and E. Brandt. Platelet-derived chemokines in vascular biology. Thromb. Haemost. 97:704–713, 2007.Google Scholar
  38. 38.
    Witzenbichler, B., P. C. Maisonpierre, P. Jones, G. D. Yancopoulos, and J. M. Isner. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J. Biol. Chem. 273(29):18514–18521, 1998.CrossRefGoogle Scholar
  39. 39.
    Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13(7):1443–1453, 2007.CrossRefGoogle Scholar
  40. 40.
    Zhu, W. H., A. MacIntyre, and R. F. Nicosia. Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. Am. J. Pathol. 161(3):823–830, 2002.Google Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Anusuya Das
    • 1
    • 3
    Email author
  • Doug Lauffenburger
    • 1
  • Harry Asada
    • 2
  • Roger Kamm
    • 1
    • 2
  1. 1.Departments of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departments of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Departments of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations