Skip to main content
Log in

A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Spatial asymmetry of actin edge ruffling contributes to the process of cell polarization and directional migration, but mechanisms by which external cues control actin polymerization near cell edges remain unclear. We designed a quantitative image analysis strategy to measure the spatiotemporal distribution of actin edge ruffling. Time-lapse images of endothelial cells (ECs) expressing mRFP-actin were segmented using an active contour method. In intensity line profiles oriented normal to the cell edge, peak detection identified the angular distribution of polymerized actin within 1 μm of the cell edge, which was localized to lamellipodia and edge ruffles. Edge features associated with filopodia and peripheral stress fibers were removed. Circular statistical analysis enabled detection of cell polarity, indicated by a unimodal distribution of edge ruffles. To demonstrate the approach, we detected a rapid, nondirectional increase in edge ruffling in serum-stimulated ECs and a change in constitutive ruffling orientation in quiescent, nonpolarized ECs. Error analysis using simulated test images demonstrate robustness of the method to variations in image noise levels, edge ruffle arc length, and edge intensity gradient. These quantitative measurements of edge ruffling dynamics enable investigation at the cellular length scale of the underlying molecular mechanisms regulating actin assembly and cell polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Boudier, T. Developing a deformation model for complex-shaped contours. Innov. Tech. Biol. Med. 18:1–14, 1997.

    Google Scholar 

  2. Bray, D., and J. G. White. Cortical flow in animal cells. Science 239:883–888, 1988.

    Article  Google Scholar 

  3. Dalous, J., E. Burghardt, A. Muller-Taubenberger, F. Bruckert, G. Gerisch, and T. Bretschneider. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophys. J. 94:1063–1074, 2008.

    Article  Google Scholar 

  4. Danuser, G., and C. M. Waterman-Storer. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35:361–387, 2006.

    Article  Google Scholar 

  5. Desmarais, V., I. Ichetovkin, J. Condeelis, and S. E. Hitchcock-Degregori. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115:4649–4660, 2002.

    Article  Google Scholar 

  6. Dobereiner, H. G., B. J. Dubin-Thaler, J. M. Hofman, H. S. Xenias, T. N. Sims, G. Giannone, M. L. Dustin, C. H. Wiggins, and M. P. Sheetz. Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett. 97:038102, 2006.

    Article  Google Scholar 

  7. Dormann, D., T. Libotte, C. J. Weijer, and T. Bretschneider. Simultaneous quantification of cell motility and protein-membrane-association using active contours. Cell Motil. Cytoskel. 52:221–230, 2002.

    Article  Google Scholar 

  8. Ehringer, W. D., S. Yamany, K. Steier, A. Farag, F. J. Roisen, A. Dozier, and F. N. Miller. Quantitative image analysis of F-actin in endothelial cells. Microcirculation 6:291–303, 1999.

    Google Scholar 

  9. Fisher, N. I. Statistical Analysis of Circular Data. Cambridge: Cambridge University Press, 1993.

    Book  MATH  Google Scholar 

  10. Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Reading, MA: Addison-Wesley, 1992.

    Google Scholar 

  11. Gupton, S. L., K. L. Anderson, T. P. Kole, R. S. Fischer, A. Ponti, S. E. Hitchcock-Degregori, G. Danuser, V. M. Fowler, D. Wirtz, D. Hanein, and C. M. Waterman-Storer. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168:619–631, 2005.

    Article  Google Scholar 

  12. Harms, B. D., G. M. Bassi, A. R. Horwitz, and D. A. Lauffenburger. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys. J. 88:1479–1488, 2005.

    Article  Google Scholar 

  13. Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.

    Google Scholar 

  14. Hinz, B., W. Alt, C. Johnen, V. Herzog, and H. W. Kaiser. Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp. Cell Res. 251:234–243, 1999.

    Article  Google Scholar 

  15. Hiraoka, Y., J. W. Sedat, D. A. Agard, and D. A. Agard. Determination of three-dimensional properties of a light microscope system: partial confocal behavior in epifluorescence microscopy. Biophys. J. 57:325–333, 1990.

    Article  Google Scholar 

  16. Horwitz, R., and D. Webb. Cell migration. Curr. Biol. 13:R756–R759, 2003.

    Article  Google Scholar 

  17. Katsumi, A., J. Milanini, W. B. Kiosses, M. A. Del Pozo, R. Kaunas, S. Chien, K. M. Hahn, and M. A. Schwartz. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158:153–164, 2002.

    Article  Google Scholar 

  18. Li, S., P. J. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J.-L. Guan, and S. Chien. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 99:3546, 2002.

    Article  Google Scholar 

  19. Machacek, M., and G. Danuser. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90:1439–1452, 2006.

    Article  Google Scholar 

  20. Masuda, M., and K. Fujiwara. The biased lamellipodium development and microtubule organizing center position in vascular endothelial cells migrating under the influence of fluid flow. Biol. Cell 77:237–245, 1993.

    Article  Google Scholar 

  21. Pankov, R., Y. Endo, S. Even-Ram, M. Araki, K. Clark, E. Cukierman, and K. M. Yamada. A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170:793–802, 2005.

    Article  Google Scholar 

  22. Rottner, K., B. Behrendt, J. V. Small, and J. Wehland. VASP dynamics during lamellipodia protrusion. Nat. Cell Biol. 1:321–322, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Helmke.

Additional information

Associate Editor Yingxiao Peter Wang and Peter Butler oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Helmke, B.P. A Semi-Automatic Method for Image Analysis of Edge Dynamics in Living Cells. Cel. Mol. Bioeng. 4, 205–219 (2011). https://doi.org/10.1007/s12195-010-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0141-z

Keywords

Navigation