Skip to main content

Measuring Traction Forces in Long-Term Cell Cultures

Abstract

This report describes an approach to extend indefinitely the duration of traction force measurements with cells cultured on soft polyacrylamide gels. Typical observation times in traction force measurements on similar substrates have been limited to 24–48 h, but cell differentiation or responses to external stimuli often occur over much longer periods of several days or weeks. This study describes a method for covalently linking fluorescent marker beads to a polyacrylamide matrix that renders the hydrogels useful for traction force measurements over several days. This approach was validated by comparing the contractility of C2C12 murine skeletal muscle cells prior to myotube formation, after one day in culture, with that of myotubes after 7 days in culture. Measured tractions increased concurrent with the differentiation of C2C12 cells to the contractile, myotube phenotype. Covalent bead linkage thus extends the useful period during which traction force data can be obtained with cells cultured on optically transparent polyacrylamide hydrogels with controlled elastic moduli.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282:C595–C605, 2002.

    Google Scholar 

  2. 2.

    Chen, C. S., J. Tan, and J. Tien. Mechanotransduction at cell–matrix and cell–cell contacts. Ann. Rev. Biomed. Eng. 6:275–302, 2004.

    Article  Google Scholar 

  3. 3.

    Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48, 1997.

    Article  Google Scholar 

  4. 4.

    Domke, J., and M. Radmacher. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325, 1998.

    Article  Google Scholar 

  5. 5.

    Dong, R., T. W. Jensen, K. Engberg, R. G. Nuzzo, and D. E. Leckband. Variably elastic hydrogel patterned via capillary action in microchannels. Langmuir 23:1483–1488, 2007.

    Article  Google Scholar 

  6. 6.

    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  7. 7.

    Ganz, A., M. Lambert, A. Saez, P. Silberzan, A. Buguin, R. M. Mage, and B. Ladoux. Traction forces exerted through N-cadherin contacts. Biol. Cell 98:721–730, 2006.

    Article  Google Scholar 

  8. 8.

    Gunawan, R. C., E. R. Choban, J. E. Conour, J. Silvestre, L. B. Schook, H. R. Gaskins, D. E. Leckband, and P. J. A. Kenis. Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins. Langmuir 21:3061–3068, 2005.

    Article  Google Scholar 

  9. 9.

    Harris, A. K., P. Wild, and D. Stopak. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179, 1980.

    Article  Google Scholar 

  10. 10.

    Hinterberger, T. J., and K. F. Barald. Fusion between myoblasts and adult muscle fibers promotes remodeling of fibers into myotubes in vitro. Development 109:139–147, 1990.

    Google Scholar 

  11. 11.

    Kim, D.-H., P. K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Ann. Rev. Biomed. Eng. 11:203–233, 2009.

    Article  Google Scholar 

  12. 12.

    Kumar, S., and V. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Article  Google Scholar 

  13. 13.

    Li, L., N. Sharma, U. Chipada, X. Jiang, R. Schloss, M. Yarmush, and N. Langrana. Functional modulation of ES-derived hepatocyte lineage cells via substrate compliance alteration. Ann. Biomed. Eng. 36:865–876, 2008.

    Article  Google Scholar 

  14. 14.

    Lombardi, M. L., D. A. Knect, M. Dembo, and J. Lee. Traction force microscopy in Dictyostelium reveals distinct roles for myosin II motor and actin-crosslinking activity in polarized cell movement. J. Cell Sci. 120:1624–1634, 2007.

    Article  Google Scholar 

  15. 15.

    McMahon, D. K., P. A. Anderson, R. Nassar, J. B. Bunting, Z. Saba, A. E. Oakeley, and N. N. Malouf. C2C12 cells: biophysical, biochemical, and immunocytochemical properties. Am. J. Physiol. Cell Physiol. 266:C1795–C1802, 1994.

    Google Scholar 

  16. 16.

    Pless, D. D., Y. C. Lee, S. Roseman, and R. L. Schnaar. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258:2340–2349, 1983.

    Google Scholar 

  17. 17.

    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.

    Article  Google Scholar 

  18. 18.

    Rowlands, A. S., P. A. George, and J. J. Cooper-White. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell Physiol. 295:C1037–C1044, 2008.

    Article  Google Scholar 

  19. 19.

    Saha, K., A. J. Keung, E. Irwin, L. Yang, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.

    Article  Google Scholar 

  20. 20.

    Teixeira, A. I., S. Ilkhanizadeh, J. A. Wigenius, J. K. Duckworth, O. Inganas, and O. Hermanson. The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572, 2009.

    Article  Google Scholar 

  21. 21.

    Tempelman, L. A. Quantifying Receptor-Mediated Cell Adhesion Under Fluid Flow Using a Model Granulocyte Cell Line. Dissertation, Cornell Univeristy, New York, p. 328, 1993.

  22. 22.

    Tolic-Norrelykke, I. M., J. P. Butler, J. Chen, and N. Wang. Spatial and temporal traction response in human airway smooth muscle cells. Am. J. Physiol. Cell Physiol. 283:C1254–C1266, 2002.

    Google Scholar 

  23. 23.

    Tolic-Norrelykke, I. M., and N. Wang. Traction in smooth muscle cells varies with cell spreading. J. Biomech. 38:1405–1412, 2005.

    Article  Google Scholar 

  24. 24.

    Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Ann. Rev. Biophys. Biomol. Struct. 35:459–488, 2006.

    Article  Google Scholar 

  25. 25.

    Wang, Y.-L., R. J. Pelham, and B. V. Richard. Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998.

    Article  Google Scholar 

  26. 26.

    Yang, Z., J. S. Lin, J. Chen, and J. H. C. Wang. Determining substrate displacement and cell traction fields—a new approach. J. Theor. Biol. 242:607–616, 2006.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Reid T. Milner Professorship to DEL and CM was supported by 5 P01 HL060678. The authors have no financial interests in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deborah Leckband.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mann, C., Leckband, D. Measuring Traction Forces in Long-Term Cell Cultures. Cel. Mol. Bioeng. 3, 40–49 (2010). https://doi.org/10.1007/s12195-010-0108-0

Download citation

Keywords

  • Traction force microscopy
  • Polyacrylamide hydrogel
  • Cell contractility
  • Differentiation
  • Mechanosensing