Skip to main content
Log in

Differential Gene Expression of Integrins Alpha 2 and Beta 8 in Human Mesenchymal Stem Cells Exposed to Fluid Flow

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Human bone marrow-derived mesenchymal stem cells (MSCs) have potential applications for tissue engineering because they can differentiate into numerous cell lineages. Mechanical forces and mechanotransduction are important factors influencing cell responses, although such data are limited for MSCs. We investigated the gene expression response of integrin and extracellular matrix (ECM) genes in MSCs exposed to different magnitudes (1, 5, and 10 dyn/cm2) and durations (10 min, 1 h, and 24 h) of fluid flow-induced shear stress. Gene expression was examined using microarray and quantitative real-time RT-PCR analysis. In response to different magnitudes and durations of shear stress, we observed significant differential gene expression for two integrin genes: consistent up-regulation of integrin α2 subunit (ITGA2) [2- to 18-fold] and consistent down-regulation of integrin β8 subunit (ITGB8) [2- to 9-fold]. There was also evidence of ECM gene down-regulation, namely collagen type XI α1 (COL11A1), COL14A1, and COL21A1 (2- to 4-fold for each), and laminin α4 (LAMA4) [2- to 5-fold]. This indicates specific modulation of integrin gene expression in response to shear stress, supporting altered cell–ECM interactions and integrin-mediated mechanotransduction. These findings further our understanding of how mechanical stimuli regulate MSC behavior, which will be important in the development of mechanical conditioning strategies for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bab, I., C. R. Howlett, B. A. Ashton, and M. E. Owen. Ultrastructure of bone and cartilage formed in vivo in diffusion chambers. Clin. Orthop. Relat. Res. Jul–Aug:243–254, 1984.

  2. Bruder, S. P., D. J. Fink, and A. I. Caplan. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J. Cell. Biochem. 56:283–294, 1994.

    Article  Google Scholar 

  3. Burridge, K., and M. Chrzanowska-Wodnicka. Focal adhesions, contractility and signaling. Annu. Rev. Cell Dev. Biol. 12:463–518, 1996.

    Article  Google Scholar 

  4. Bustin, S. A., V. Benes, T. Nolan, T. Nolan, and M. W. Pfaffl. Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 34:597–601, 2005.

    Article  Google Scholar 

  5. Calderwood, D. A. Integrin activation. J. Cell Sci. 117:657–666, 2004.

    Article  Google Scholar 

  6. Cambier, S., D. Z. Mu, D. O’Connell, K. Boylen, W. Travis, W. H. Liu, V. C. Broaddus, and S. L. Nishimura. A role for the integrin alphavbeta8 in the negative regulation of epithelial cell growth. Cancer Res. 60:7084–7093, 2000.

    Google Scholar 

  7. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9:641–650, 1991.

    Article  Google Scholar 

  8. Chastain, S. R., A. K. Kundu, S. Dhar, J. W. Calvert, and A. J. Putnam. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 78:73–85, 2006.

    Google Scholar 

  9. Chen, K.-D., Y.-S. Li, M. Kim, S. Li, S. Yuan, S. Chien, and J. Y. Shyy. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins and Shc. J. Biol. Chem. 274:18393–18400, 1999.

    Article  Google Scholar 

  10. Chiquet, M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18:417–426, 1999.

    Article  Google Scholar 

  11. Davies, P. F., A. Robotewskyj, and M. L. Griem. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis. J. Clin. Invest. 91:2640–2652, 1993.

    Article  Google Scholar 

  12. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Article  Google Scholar 

  13. Docheva, D., C. Popov, W. Mutschler, and M. Schieker. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell. Mol. Med. 11:21–38, 2007.

    Article  Google Scholar 

  14. Friedenstein, A. J., R. K. Chailakhyan, and U. V. Gerasimov. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20:263–272, 1987.

    Google Scholar 

  15. Goessler, U. R., K. Biebeck, P. Bugert, T. Heller, H. Sadick, K. Hormann, and F. Riedel. In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. Int. J. Mol. Med. 17:301–307, 2006.

    Google Scholar 

  16. Goessler, U. R., P. Bugert, K. Bieback, J. Stern-Straeter, G. Bran, K. Hormann, and F. Riedel. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int. J. Mol. Med. 21:271–279, 2008.

    Google Scholar 

  17. Huang, H., R. D. Kamm, and R. T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287:C1–C11, 2004.

    Article  Google Scholar 

  18. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.

    Article  Google Scholar 

  19. Ishida, T., T. E. Peterson, N. L. Kovach, and B. C. Berk. MAP kinase activation by flow in endothelial cells. Circ. Res. 79:310–316, 1996.

    Google Scholar 

  20. Jalali, S., M. A. del Pozo, K.-D. Chen, H. Miao, Y.-S. Li, M. A. Schwartz, J. Y. Shyy, and S. Chien. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98:1042–1046, 2001.

    Article  Google Scholar 

  21. Kanehisa, M., M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(Database issue):D480–D484, 2008.

    Google Scholar 

  22. Kanehisa, M., and S. Goto. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30, 2000.

    Article  Google Scholar 

  23. Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–D357, 2006.

    Article  Google Scholar 

  24. Katsumi, A., W. Orr, E. Tzima, and M. A. Schwartz. Integrins in mechanotransduction. J. Biol. Chem. 279:12001–12004, 2004.

    Article  Google Scholar 

  25. Kundu, A. K., and A. J. Putnam. Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem. Biophys. Res. Commun. 347:347–357, 2006.

    Article  Google Scholar 

  26. Langholz, O., D. Rockel, C. Mauch, E. Kozlowska, I. Bank, T. Krieg, and B. Eckes. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J. Cell Biol. 131:1903–1915, 1995.

    Article  Google Scholar 

  27. Majumdar, M. K., M. Keane-Moore, D. Buyaner, W. B. Hardy, M. A. Moorman, K. R. McIntosh, and J. D. Mosca. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 10:228–241, 2003.

    Article  Google Scholar 

  28. Mardon, H. J., J. Bee, K. von der Mark, and M. E. Owen. Development of osteogenic tissue in diffusion chambers from early precursor cells in bone marrow of adult rats. Cell Tissue Res. 250:157–165, 1987.

    Article  Google Scholar 

  29. Mauch, C., C. B. Adelmann-Grill, A. Hatamochi, and T. Krieg. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 250:301–305, 1989.

    Article  Google Scholar 

  30. Milner, R., X. Huang, J. Wu, S. Nishimura, R. Pytela, D. Sheppard, and C. Ffrench-Constant. Distinct roles for astrocyte alphavbeta5 and alphavbeta8 integrins in adhesion and migration. J. Cell Sci. 112:4271–4279, 1999.

    Google Scholar 

  31. Mizuno, M., R. Fujisawa, and Y. Kuboki. Type I collagen-induced osteoblastic differentiation of bone marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 184:207–213, 2000.

    Article  Google Scholar 

  32. Mizuno, M., and Y. Kuboki. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J. Biochem. 129:133–138, 2001.

    Google Scholar 

  33. Moyle, M., M. A. Napier, and J. W. McLean. Cloning and expression of a divergent integrin subunit beta 8. J. Biol. Chem. 266:19650–19658, 1991.

    Google Scholar 

  34. Mu, D., S. L. Cambier, L. Fjellbirkeland, J. L. Baron, J. S. Munger, H. Kawakatsu, D. Sheppard, V. C. Broaddus, and S. L. Nishimura. The integrin alpha v beta 8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta 1. J. Cell Biol. 157:493–507, 2002.

    Article  Google Scholar 

  35. Nishimura, S. L., D. Sheppard, and R. Pytela. Integrin alpha v beta 8. Interaction with vitronectin and functional divergence of the beta 8 cytoplasmic domain. J. Biol. Chem. 269:28708–28715, 1994.

    Google Scholar 

  36. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    Google Scholar 

  37. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    Article  Google Scholar 

  38. Prockop, D. J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74, 1997.

    Article  Google Scholar 

  39. Riddle, R. C., A. F. Taylor, D. C. Genetos, and H. J. Donahue. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am. J. Physiol. Cell Physiol. 290:C776–C784, 2006.

    Article  Google Scholar 

  40. Schneider, G. B., R. Zaharias, and C. Stanford. Osteoblast integrin adhesion and signaling regulate mineralization. J. Dent. Res. 80:1540–1544, 2001.

    Article  Google Scholar 

  41. Shyy, J. Y., and S. Chien. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91:769–775, 2002.

    Article  Google Scholar 

  42. Staatz, W. D., K. F. Fok, M. M. Zutter, S. P. Adams, B. A. Rodriguez, and S. A. Santoro. Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. J. Biol. Chem. 266:7363–7367, 1991.

    Google Scholar 

  43. Takahashi, M., and B. C. Berk. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J. Clin. Invest. 98:2623–2631, 1996.

    Article  Google Scholar 

  44. Tzima, E., M. A. del Pozo, S. J. Shattil, S. Chien, and M. A. Schwartz. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20:4639–4647, 2001.

    Article  Google Scholar 

  45. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Mr. Brian King for designing and manufacturing the slide chambers for cell lysis. This work was supported by a Research Grant (BB/D000548/1) from the Biotechnology and Biological Sciences Research Council (BBSRC), UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. Cartmell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glossop, J.R., Cartmell, S.H. Differential Gene Expression of Integrins Alpha 2 and Beta 8 in Human Mesenchymal Stem Cells Exposed to Fluid Flow. Cel. Mol. Bioeng. 2, 544–553 (2009). https://doi.org/10.1007/s12195-009-0083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0083-5

Keywords

Navigation