Cellular and Molecular Bioengineering

, Volume 2, Issue 1, pp 66–74 | Cite as

Nanomechanical Characterization of the Triple β-Helix Domain in the Cell Puncture Needle of Bacteriophage T4 Virus

  • Sinan Keten
  • J. Fernando Rodriguez Alvarado
  • Sinan Müftü
  • Markus J. Buehler
Article

Abstract

Beta-solenoids are a class of protein nanotube structures that are observed in virulence factors, prion proteins and amyloid fibrils. Here we investigate the compressive strength of the triple-beta-helix solenoid structure found in the cell puncture needle of the bacteriophage T4 virus. We characterize the compressive mechanical strength of this protein nanotube using full-atomistic molecular dynamics simulations in explicit solvent over a wide range of deformation speeds. We observe that the dynamical behavior, stiffness and failure strength of the structure are strongly dependent on the deformation rate. We illustrate that H-bond rupture initiation is the atomistic mechanism that leads to instability and buckling of the protein nanotube at the peak force. We show that the behavior of the protein under small compressive deformation can be approximated by a rate-dependent linear elastic modulus, which can be used in context of a continuum Euler buckling formula for the triple-helix geometry to predict the failure load. Our work provides a link between the structure and biofunctional properties of this beta-solenoid topology, and illustrates a rigorous framework for bridging the gap between experimental and simulation time-scales for future compression studies on proteins. Our study is relevant to self-assembling peptide nanotube materials, and may provide insight into the influence of mechanical properties on the pathological pathways of virulence factors, prions and amyloids found in neurodegenerative diseases.

Keywords

Protein Nanotube Triple beta-helix Beta-solenoids Buckling Failure Mechanics Rate-dependence Molecular dynamics Hydrogen bond Cell-puncture device Amyloids 

References

  1. 1.
    Ackbarow, T., et al. (2007). Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc Natl Acad Sci USA 104(42):16410–16415.CrossRefGoogle Scholar
  2. 2.
    Bernstein, F.C., et al., The Protein Data Bank: computer-based archival file for macromolecular structures. J. Mol. Biol., 1977. 112(3): p. 535–542.CrossRefGoogle Scholar
  3. 3.
    Brändén, C.-I., and J. Tooze, Introduction to Protein Structure, 2nd ed. New York: Garland Publishing, xiv, 410 pp, 1999Google Scholar
  4. 4.
    Buehler, M. J., Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA, 2006. 103(33): p. 12285–12290.CrossRefGoogle Scholar
  5. 5.
    Buehler, M. and S. Wong, Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J., 2007. 93(1): p. 37–43.CrossRefGoogle Scholar
  6. 6.
    Buschmann, M.D. and A.J. Grodzinsky, A molecular-model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. Trans. ASME, 1995. 117(2): p. 179–192.CrossRefGoogle Scholar
  7. 7.
    Chiti, F. and C.M. Dobson, Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006. 75: p. 333–366.CrossRefGoogle Scholar
  8. 8.
    Cox, D.L., et al., The materials science of protein aggregation. MRS Bull., 2005. 30(6): p. 452–457.Google Scholar
  9. 9.
    da Silva, A. and O. Teschke, Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J. Microbiol. Biotechnol., 2005. 21(6–7): p. 1103–1110.CrossRefGoogle Scholar
  10. 10.
    Gittes, F., et al., Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J. Cell Biol., 1993. 120(4): p. 923–934.CrossRefGoogle Scholar
  11. 11.
    Govaerts, C., et al., Evidence for assembly of prions with left-handed beta 3-helices into trimers. Proc. Natl. Acad. Sci. USA, 2004. 101(22): p. 8342–8347.CrossRefGoogle Scholar
  12. 12.
    Graether, S., et al., beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. NATURE, 2000. 406(6793): p. 325–328.CrossRefGoogle Scholar
  13. 13.
    Hansma, H. G., et al., Probing biopolymers with the atomic force microscope: A review. J. Biomater. Sci. Polym. Ed., 2000. 11(7): p. 675–683.CrossRefGoogle Scholar
  14. 14.
    Hibbeler, R.C., Statics and Mechanics of Materials. 2 ed. 2005, Englewood Cliffs, NJ: Prentice Hall. 800.Google Scholar
  15. 15.
    Humphrey, W., A. Dalke, and K. Schulten (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38.CrossRefGoogle Scholar
  16. 16.
    Isralewitz, B., M. Gao, and K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol., 2001. 11(2): p. 224–230.CrossRefGoogle Scholar
  17. 17.
    Kajava, A., J. Squire, and D. Parry (2006) Beta-structures in fibrous proteins. Adv Protein Chem 73:1–15.CrossRefGoogle Scholar
  18. 18.
    Kanamaru, S., et al., Structure of the cell-puncturing device of bacteriophage T4. Nature, 2002. 415(6871): p. 553–557.CrossRefGoogle Scholar
  19. 19.
    Kellermayer, M.S.Z., et al., Reversible mechanical unzipping of amyloid beta-fibrils. J. Biol. Chem., 2005. 280(9): p. 8464–8470.CrossRefGoogle Scholar
  20. 20.
    Keten, S. and M.J. Buehler, Large deformation and fracture mechanics of a beta-helical protein nanotube: Atomistic and continuum modeling. Comput. Methods Appl. Mech. Eng., 2008. 197(41–42): p. 3203–3214.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Keten, S. and M.J. Buehler, Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett., 2008. 8(2): p. 743–748.CrossRefGoogle Scholar
  22. 22.
    27. Keten, S., and M. J. Buehler (2008) Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Phys Rev Lett 100(19):198301.CrossRefGoogle Scholar
  23. 23.
    Kishimoto, A., et al., beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 2004. 315(3): p. 739–745.CrossRefGoogle Scholar
  24. 24.
    Knowles, T.P., et al., Role of intermolecular forces in defining material properties of protein nanofibrils. Science, 2007. 318(5858): p. 1900–1903.CrossRefGoogle Scholar
  25. 25.
    MacKerell, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998. 102(18): p. 3586–3616.CrossRefGoogle Scholar
  26. 26.
    Marszalek, P.E., et al., Mechanical unfolding intermediates in titin modules. Nature, 1999. 402(6757): p. 100–103.CrossRefGoogle Scholar
  27. 27.
    Mitraki, A., S. Miller, and M.J. van Raaij, Review: Conformation and folding of novel beta-structural elements in viral fiber proteins: the triple beta-spiral and triple beta-helix. J. Struct. Biol., 2002. 137(1–2): p. 236–247.CrossRefGoogle Scholar
  28. 28.
    Mostaert, A. S., and S. P. Jarvis (2007). Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives. Nanotechnology 18(4):044010.CrossRefGoogle Scholar
  29. 29.
    Mucke, N., et al., Assessing the flexibility of intermediate filaments by atomic force microscopy. J. Mol. Biol., 2004. 335(5): p. 1241–1250.CrossRefGoogle Scholar
  30. 30.
    Nelson, M.T., et al., NAMD: A parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput., 1996. 10(4): p. 251–268.CrossRefGoogle Scholar
  31. 31.
    Oroudjev, E., et al., Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proceedings of the National Academy of Sciences, 2002. 99(Suppl 2): p. 6460–6465.CrossRefGoogle Scholar
  32. 32.
    Rief, M., et al., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 1997. 276(5315): p. 1109–1112.CrossRefGoogle Scholar
  33. 33.
    Rief, M., et al., The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J., 1998. 75(6): p. 3008–3014.CrossRefGoogle Scholar
  34. 34.
    Ritter, C., et al., Correlation of structural elements and infectivity of the HET-s prion. Nature, 2005. 435(7043): p. 844–848.CrossRefGoogle Scholar
  35. 35.
    Smith, J.F., et al., Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2006. 103(43): p. 15806–15811.CrossRefGoogle Scholar
  36. 36.
    Sotomayor, M. and K. Schulten, Single-molecule experiments in vitro and in silico. Science, 2007. 316(5828): p. 1144–1148.CrossRefGoogle Scholar
  37. 37.
    Sun, Y.L., et al., Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun., 2002. 295(2): p. 382–386.CrossRefGoogle Scholar
  38. 38.
    Wasmer, C., et al., Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. SCIENCE, 2008. 319(5869): p. 1523–1526.CrossRefGoogle Scholar
  39. 39.
    Yoder, M.D., S.E. Lietzke, and F. Jurnak, Unusual Structural Features in the Parallel Beta-Helix in Pectate Lyases. Structure, 1993. 1(4): p. 241–251.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Sinan Keten
    • 1
  • J. Fernando Rodriguez Alvarado
    • 2
  • Sinan Müftü
    • 3
  • Markus J. Buehler
    • 1
  1. 1.Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations