Skip to main content
Log in

A Novel Technique of Quantifying Flexural Stiffness of Rod-Like Structures

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

In cellular and molecular biomechanics, extensional stiffness of rod-like structures such as leukocyte microvilli can be easily measured with many techniques, but not many techniques are available for measuring their flexural stiffness. In this article, we report a novel technique of measuring the flexural stiffness of rod-like structures. This technique is based on image deconvolution and, as an example, it was used for determining the flexural stiffness of neutrophil microvilli. The probes we used were 40-nm-diameter fluorescent beads, which were bound to the tips of neutrophil microvilli by anti-l-selectin antibody. The fluorescent images of the bead, which was positioned at the center of the cell bottom, were acquired with high magnification and long exposure time (3 s). Using a Gaussian function as the point spread function of our imaging system, we established a convolution equation based on Boltzmann’s law, which yields an analytical expression that relates the bead image profile to the flexural stiffness of the microvillus. The flexural stiffness was then obtained by the least squares regression. On average, the flexural stiffness was determined to be 7 pN/μm for single neutrophil microvilli. With the resolution of our imaging system, this technique can be used for measuring any flexural stiffness smaller than 34 pN/μm and it has great potential in single molecule biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Alon R., D. A. Hammer, T. A. Springer (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow Nature 374, 539–542

    Article  Google Scholar 

  2. Bruehl R. E., K. L. Moore, D. E. Lorant, N. Borregaard, G. A. Zimmerman et al. (1997) Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1 J. Leukoc. Biol. 61, 489–499

    Google Scholar 

  3. Bruehl R. E., T. A. Springer, and D. F. Bainton (1996) Quantitation of L-selectin distribution on human leukocyte microvilli by immunogold labeling and electron microscopy. J. Histochem. Cytochem. 44, 835–844

    Google Scholar 

  4. Diaspro A., F. Federici, and M. Robello (2002) Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy Appl. Opt. 41, 685–690

    Article  Google Scholar 

  5. Erlandsen S. L., S. R. Hasslen, and R. D. Nelson (1993) Detection and spatial distribution of the β2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM J. Histochem. Cytochem. 41, 327–333

    Google Scholar 

  6. Felgner H., R. Frank, and M. Schliwa (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109, 509–516

    Google Scholar 

  7. Fors B. P., K. Goodarzi, and U. H. von Andrian (2001) L-Selectin shedding is independent of its subsurface structures and topographic distribution J. Immunol. 167, 3642–3651

    Google Scholar 

  8. Gittes F., B. Mickey, J. Nettleton, and J. Howard (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934

    Article  Google Scholar 

  9. Goldman A. J., R. G. Cox, and H. Brenner (1967) Slow viscous motion of a sphere parallel to a plane wall: II. Couette flow. Chem. Engr. Sci. 22, 653–660

    Article  Google Scholar 

  10. Howard J., and A. J. Hudspeth (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the Bullfrog’s saccular hair cell. Proc. Natl. Acad. Sci. USA 84, 3064–3068

    Article  Google Scholar 

  11. Inoué S., and K. R. Spring (1997) Video Microscopy: The Fundamentals (Plenum Press, New York)

    Google Scholar 

  12. Isambert H., P. Venier, A. C. Maggs, A. Fattoum, and R. Kassab et al. (1995) Flexibility of actin filaments derived from thermal fluctuations: effect of bound nucleotide, phalloidin, and muscle regulatory proteins J. Biol. Chem. 270, 11437–11444

    Article  Google Scholar 

  13. Izu L. T., W. G. Wier, and C. W. Balke (1998) Theoretical analysis of the Ca2+ spark amplitude distribution. Biophys. J. 75, 1144–1162

    Google Scholar 

  14. Kis A., S. Kasas, B. Babic, A. J. Kulik, W. Benoit et al. (2002) Nanomechanics of Microtubules. Phys. Rev. Lett. 89, 248101–248104

    Article  Google Scholar 

  15. Lee J. C. M., and D. E. Discher (2001) Deformation-enhanced fluctuations in the red cell skeleton with theoretical relations to elasticity, connectivity, and spectrin unfolding Biophys. J. 81, 3178–3192

    Google Scholar 

  16. Li F., H. P. Erickson, J. A. James, K. L. Moore, R. D. Cummings et al. (1996) Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies J. Biol. Chem. 271, 6342–6348

    Article  Google Scholar 

  17. Littlefield R., and V. M. Fowler (2002) Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys. J. 82, 2548–2564

    Google Scholar 

  18. McEver R. P. (1997) Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj. J. 14, 585–591

    Article  Google Scholar 

  19. McNally J. G., T. Karpova, J. Cooper, and J. A. Conchello (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19, 373–385

    Article  Google Scholar 

  20. Michalet X., T. D. Lacoste, and S. Weiss (2001) Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25, 87–102

    Article  Google Scholar 

  21. Pavalko F. M., D. M. Walker, L. Graham, M. Goheen, and C. M. Doerschuk et al. (1995) The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via α -actinin: receptor positioning in microvilli does not require interaction with α -actinin. J. Cell Biol. 129, 1155–1164

    Article  Google Scholar 

  22. Ritchie, K., and Kusumi, A. (2003) Single-particle tracking image microscopy. Methods Enzymol. 360, 618–634

    Article  Google Scholar 

  23. Santos A., and I. T. Young (2000) Model-based resolution: applying the theory in quantitative microscopy. Appl. Opt. 39, 2948–2958

    Article  Google Scholar 

  24. Saxton M. J., and K. Jacobson (1997) Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399

    Article  Google Scholar 

  25. Shao J. Y., H. P. Ting-Beall, and R. M. Hochmuth (1998) Static and dynamic lengths of neutrophil microvilli. Proc. Natl. Acad. Sci. USA 95, 6797–6802

    Article  Google Scholar 

  26. Shao J. Y., G. Xu, and P. Guo (2004) Quantifying cell-adhesion strength with micropipette manipulation: principle and application. Front. Biosci. 9, 2183–2191.

    Article  Google Scholar 

  27. Shin J. H., L. Mahadevan, P. T. So, and P. Matsudaira (2004) Bending stiffness of a crystalline actin bundle. J. Mol. Biol. 337, 255–261

    Article  Google Scholar 

  28. Snapp K. R., C. E. Heitzig, and G. S. Kansas (2002) Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood 99, 4494–4502

    Article  Google Scholar 

  29. Ting-Beall H. P., D. Needham, and R. M. Hochmuth (1993) Volume and osmotic properties of human neutrophils. Blood 81, 2774–2780

    Google Scholar 

  30. Treacy M. M. J., T. W. Ebbesen, and J. M. Gibson (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680

    Article  Google Scholar 

  31. Treacy M. M., A. Krishnan, and P. N. Yianilos (2000) Inferring physical parameters from images of vibrating carbon nanotubes. Microsc. Microanal. 6, 317–323

    Google Scholar 

  32. Von Andrian U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher (1995) A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989–999

    Article  Google Scholar 

  33. Yamada S., D. Wirtz, and S. C. Kuo (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747

    Article  Google Scholar 

  34. Yanagida T., M. Nakase, K. Nishiyama, and F. Oosawa (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60

    Article  Google Scholar 

  35. Yao D. K., and J. Y. Shao (2007) Flexibility of single microvilli on live neutrophils and lymphocytes. Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 76, 021907

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (R01 HL069947 and R21/R33 RR017014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yu Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, DK., Shao, JY. A Novel Technique of Quantifying Flexural Stiffness of Rod-Like Structures. Cel. Mol. Bioeng. 1, 75–83 (2008). https://doi.org/10.1007/s12195-008-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0012-z

Keywords

Navigation