Skip to main content
Log in

Model for Protein Concentration Gradients in the Cytoplasm

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Intracellular protein concentration gradients are generally thought to be unsustainable at steady-state due to diffusion. Here we show how protein concentration gradients can theoretically be sustained indefinitely through a relatively simple mechanism that couples diffusion to a spatially segregated kinase–phosphatase system. Although it is appreciated that such systems can theoretically give rise to phosphostate gradients, it has been assumed that they do not give rise to gradients in the total protein concentration. Here we show that this assumption does not hold if the two forms of protein have different diffusion coefficients. If, for example, the phosphorylated state binds selectively to a second larger protein or protein complex, then a steady-state gradient in total protein concentration will be created. We illustrate the principle with an analytical solution to the diffusion-reaction problem and by stochastic individual-based simulations using the Smoldyn program. We argue that protein gradients created in this way need to be considered in experiments using fluorescent probes and could in principle encode spatial information in the cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

A:

CheA

Y:

CheY

Yp, CheYp:

Phosphorylated CheY

Z2 :

CheZ dimer

References

  1. Andrews S. S., D. Bray. Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1:137–151, 2004

    Article  Google Scholar 

  2. Blat Y., M. Eisenbach. Phosphorylation-dependent binding of the chemotaxis signal molecule CheY to its phosphatase, CheZ. Biochemistry 33(4):902–906, 1994

    Article  Google Scholar 

  3. Brown G. C., B. N. Kholodenko. Spatial gradients of cellular phospho-proteins. FEBS Lett 457(3):452–454, 1999

    Article  Google Scholar 

  4. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14(1):18–24, 2002

    Article  Google Scholar 

  5. Caudron M., G. Bunt, P. Bastiaens, E. Karsenti. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309(5739):1373–1376, 2005

    Article  Google Scholar 

  6. Cermelli S., Y. Guo, S. P. Gross, M. A. Welte. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16(18):1783–1795, 2006

    Article  Google Scholar 

  7. Francis N. R., M. N. Levit, T. R. Shaikh, L. A. Melanson, J. B. Stock, D. J. DeRosier. Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy. J. Biol. Chem. 277(39):36755–36759, 2002

    Article  Google Scholar 

  8. Gardner M. K., C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom, E. D. Salmon, and D. J. Odde. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16(8):3764–3775, 2005

    Article  Google Scholar 

  9. Haugh J. M. Membrane-binding/modification model of signaling protein activation and analysis of its control by cell morphology. Biophys. J. 92(11):L93–L95, 2007

    Article  Google Scholar 

  10. Jacobson K., J. Wojcieszyn. The translational mobility of substances within the cytoplasmic matrix. Proc. Natl. Acad. Sci. USA 81(21):6747–6751, 1984

    Article  Google Scholar 

  11. Kalab P., A. Pralle, E. Y. Isacoff, R. Heald, K. Weis. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440(7084):697–701, 2006

    Article  Google Scholar 

  12. Kalab P., K. Weis, R. Heald. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295(5564):2452–2456, 2002

    Article  Google Scholar 

  13. Li M., G. L. Hazelbauer. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186(12):3687–3694, 2004

    Article  Google Scholar 

  14. Lin A. C., C. E. Holt. Local translation and directional steering in axons. EMBO J 26(16):3729–3736, 2007

    Article  Google Scholar 

  15. Lipkow K. Changing cellular location of CheZ predicted by molecular simulations. PLoS Comput. Biol. 2(4):e39.

    Article  Google Scholar 

  16. Lipkow K., S. S. Andrews, D. Bray. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J. Bacteriol. 187(1):45–53, 2005

    Article  Google Scholar 

  17. Meyers J., J. Craig, D. J. Odde. Potential for control of signaling pathways via cell size and shape. Curr. Biol. 16(17):1685–1693, 2006

    Article  Google Scholar 

  18. Nalbant P., L. Hodgson, V. Kraynov, A. Toutchkine, K. M. Hahn. Activation of endogenous Cdc42 visualized in living cells. Science 305(5690):1615–1619, 2004

    Article  Google Scholar 

  19. Niethammer P., P. Bastiaens, E. Karsenti. Stathmin-tubulin interaction gradients in motile and mitotic cells. Science 303(5665):1862–1866, 2004

    Article  Google Scholar 

  20. Odde D. Diffusion inside microtubules. Eur. Biophys. J. 27(5):514–520, 1998

    Article  Google Scholar 

  21. Shrout A. L., D. J. Montefusco, R. M. Weis. Template-directed assembly of receptor signaling complexes. Biochemistry 42(46):13379–13385, 2003

    Article  Google Scholar 

  22. Sourjik V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12(12):569–576, 2004

    Article  Google Scholar 

  23. Sprague B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon, D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84(6):3529–3546, 2003

    Article  Google Scholar 

  24. Stewart R. C., K. Jahreis, J. S. Parkinson. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39(43):13157–13165, 2000

    Article  Google Scholar 

  25. Swillens S., M. Paiva, J. E. Dumont. Consequences of the intracellular distribution of cyclic 3’,5’-nucleotides phosphodiesterases. FEBS Lett. 49(1):92–95, 1974

    Article  Google Scholar 

  26. Tostevin F., P. R. ten Wolde, M. Howard. Fundamental limits to position determination by concentration gradients. PLoS Comput. Biol. 3(4):e78, 2007

    Article  Google Scholar 

  27. Vaknin A., H. C. Berg. Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. Proc. Natl. Acad. Sci. USA 101(49):17072–17077, 2004

    Article  Google Scholar 

  28. Wollman R., E. N. Cytrynbaum, J. T. Jones, T. Meyer, J. M. Scholey, A. Mogilner. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15(9):828–832, 2005

    Article  Google Scholar 

  29. Zhao R., E. J. Collins, R. B. Bourret, R. E. Silversmith. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat. Struct. Biol. 9(8):570–575, 2002

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from National Science Foundation Career Award (BES 9984955), NIH-National Institute of General Medical Sciences (GM71522), McKnight Land-Grant Professorship to DJO, Royal Society University Research Fellowship to KL, and from NIH-NIGMS (GM64713) to Dennis Bray. We thank Dennis Bray for helpful discussions, and him and Matthew D. Levin for insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Lipkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipkow, K., Odde, D.J. Model for Protein Concentration Gradients in the Cytoplasm. Cel. Mol. Bioeng. 1, 84–92 (2008). https://doi.org/10.1007/s12195-008-0008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0008-8

Keywords

Navigation