Skip to main content
Log in

Membrane Deformability and Membrane Tension of Single Isolated Mitochondria

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Mitochondria dynamics is crucial to many biological processes such as mitochondria fusion and fission, which is highly correlated to the mechanics of single mitochondria. However, the mechanobiological coupling of mitochondria has been poorly understood. Here membrane deformability and membrane tension of individual mitochondria isolated from MtDsRed labeled human embryonic T-Rex-293 kidney cells were measured using a micropipette aspiration assay. The results demonstrated that membrane deformation of isolated mitochondria exhibited an elastic transition phase followed by an equilibrium phase, and mitochondrial membrane tension was proportional to the area compressibility. It was also indicated that mitochondrial membrane deformability was significantly affected by physical–chemical factors such as osmotic pressure or pH value, and was further correlated to mitochondrial functionality in different respiratory states and Ca2+ regulation. These findings provide a new insight into understanding the mechanical regulation of mitochondrial physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andreyev A., and G. Fiskum. Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver. Cell Death Differ. 6:825–832, 1999

    Article  Google Scholar 

  2. Armstrong J. S. Mitochondrial membrane permeabilization. The sine qua non for cell death. Bioessays 28:253–260, 2006

    Article  Google Scholar 

  3. Bandyopadhyay S. K., and A. Dutta. Mitochondrial hepatopathies. J. Assoc. Physicians India 53:973–978, 2005

    Google Scholar 

  4. Brustovetsky N., T. Brustovetsky, R. Jemmerson, and J. M. Dubinsky. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80:207–218, 2002

    Article  Google Scholar 

  5. Chance B., and G. R. Williams. Respiratory enzymes in oxidative phosphorylation III the steady state. J. Biol. Chem. 217:409–427, 1955

    Google Scholar 

  6. Chvanov M. Metabolic control of elastic properties of the inner mitochondrial membrane. J. Phys. Chem. B 110:22903–22909, 2006

    Article  Google Scholar 

  7. Darin N., G. Kollberg, A.-R. Moslemi, M. Tulinius, E. Holme, M. A. Grönlund, S. Andersson, A. Oldfors. Mitochondrial myopathy with exercise intolerance and retinal dystrophy in a sporadic patient with a G583A mutation in the mt tRNA(phe) gene. Neuromuscul. Disord. 16:504–506, 2006

    Article  Google Scholar 

  8. Evans E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160, 1989

    Article  Google Scholar 

  9. Feiguin F., A. Ferreira, K. S. Kosik, and A. Caceres, Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J. Cell Biol. 127:1021–1039, 1994

    Article  Google Scholar 

  10. Galluzzi L., N. Larochette, N. Zamzami, and G. Kroemer. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830, 2006

    Article  Google Scholar 

  11. Kwok R., and E. Evans. Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35:637–652, 1981

    Google Scholar 

  12. Long M., Z. Wu, H. Wang, G. Song, X. Wang, and Y. Wu. Experimental investigation on viscoelasticity of hepatocytes. Acta Bioph. Sin. 12:169–173, 1996

    Google Scholar 

  13. Miller K. E., and M. P. Sheetz. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117:2791–2804, 2004

    Article  Google Scholar 

  14. Needham D., and R. M. Hochmuth. A sensitive measure of surface stress in the resting neutrophil. Biophys. J. 61:1664–1670, 1992

    Google Scholar 

  15. Nichols-Smith S., S. The, and T. L. Kuhl. Thermodynamic and mechanical properties of model mitochondrial membranes. Biochim. Biophys. Acta. 1663:82–88, 2004

    Article  Google Scholar 

  16. Penman S. Rethinking cell structure. Proc. Natl. Acad. Sci. USA 92:5251–5257, 1995

    Article  Google Scholar 

  17. Petit P. X., M. Goubern, P. Diolez, S. A. Susin, N. Zamzami, and G. Kroemer. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett. 426:111–116, 1998

    Article  Google Scholar 

  18. Scheffler I. E. Mitochondria make a come back. Adv. Drug Deliv. Rev. 49:3–26, 2001

    Article  MathSciNet  Google Scholar 

  19. Sitaramam V., D. Sambasivarao, and J. C. Mathai. Differential effects of osmotic pressure on mitochondrial respiratory chain and indices of oxidative phosphorylation. Biochim. Biophys. Acta. 975:252–266, 1989

    Article  Google Scholar 

  20. Toleikis A., S. Trumbeckaite, and D. Majiene. Cytochrome c effect on respiration of heart mitochondria: influence of various factors. Biosci. Rep. 25:387–397, 2005

    Article  Google Scholar 

  21. Varadi A., L. I. Johnson-Cadwell, V. Cirulli, Y. Yoon, V. J. Allan, and G. A. Rutter. Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J. Cell Sci. 117:4389–4400, 2004

    Article  Google Scholar 

  22. Wagner O. I., J. Lifshitz, P. A. Janmey, M. Linden, T. K. McIntosh, and J.-F. Leterrier. Mechanisms of mitochondria-neurofilament interactions. J. Neurosci. 23:9046–9058, 2003

    Google Scholar 

  23. Wu Z., G. Zhang, M. Long, H. Wang, G. Song, and S. Cai. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37:279–290, 2000

    Google Scholar 

  24. Yaffe M. P. The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497, 1999

    Article  Google Scholar 

  25. Yi M., D. Weaver,and G. Hajnóczky. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol. 167:661–672, 2004

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Center of Electron Microscopy, Institute of Biophysics, Chinese Academy of Sciences to provide TEM device, and to Lei Sun for TEM sample preparation, observation and useful discussions. This work was supported by National Natural Science Foundation of China grants 10332060 and 30730032, National Key Basic Research Foundation of China grant 2006CB910303, and Chinese Academy of Sciences grant 2005-1-16 (M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Jiang, C., Zhang, Y. et al. Membrane Deformability and Membrane Tension of Single Isolated Mitochondria. Cel. Mol. Bioeng. 1, 67–74 (2008). https://doi.org/10.1007/s12195-008-0002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-008-0002-1

Keywords

Navigation