Skip to main content
Log in

Assessment of the deep learning-based gamma passing rate prediction system for 1.5 T magnetic resonance-guided linear accelerator

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Measurement-based verification is impossible for the patient-specific quality assurance (QA) of online adaptive magnetic resonance imaging-guided radiotherapy (oMRgRT) because the patient remains on the couch throughout the session. We assessed a deep learning (DL) system for oMRgRT to predict the gamma passing rate (GPR). This study collected 125 verification plans [reference plan (RP), 100; adapted plan (AP), 25] from patients with prostate cancer treated using Elekta Unity. Based on our previous study, we employed a convolutional neural network that predicted the GPRs of nine pairs of gamma criteria from 1%/1 mm to 3%/3 mm. First, we trained and tested the DL model using RPs (n = 75 and n = 25 for training and testing, respectively) for its optimization. Second, we tested the GPR prediction accuracy using APs to determine whether the DL model could be applied to APs. The mean absolute error (MAE) and correlation coefficient (r) of the RPs were 1.22 ± 0.27% and 0.29 ± 0.10 in 3%/2 mm, 1.35 ± 0.16% and 0.37 ± 0.15 in 2%/2 mm, and 3.62 ± 0.55% and 0.32 ± 0.14 in 1%/1 mm, respectively. The MAE and r of the APs were 1.13 ± 0.33% and 0.35 ± 0.22 in 3%/2 mm, 1.68 ± 0.47% and 0.30 ± 0.11 in 2%/2 mm, and 5.08 ± 0.29% and 0.15 ± 0.10 in 1%/1 mm, respectively. The time cost was within 3 s for the prediction. The results suggest the DL-based model has the potential for rapid GPR prediction in Elekta Unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, et al. MRI/linac integration. Radiother Oncol. 2008;86(1):25–9.

    Article  PubMed  Google Scholar 

  2. Winkel D, Bol GH, Kroon PS, et al. Adaptive radiotherapy: the elekta unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54–9.

    PubMed  PubMed Central  Google Scholar 

  3. Sonke JJ, Aznar M, Rasch C. Adaptive radiotherapy for anatomical changes. Semin Radiat Oncol. 2019;29(3):245–57.

    Article  PubMed  Google Scholar 

  4. Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119. Med Phys. 2009;36(11):5359–73.

    Article  PubMed  Google Scholar 

  5. Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group no. 218. Med Phys. 2018;45(4):e53–83.

    Article  PubMed  Google Scholar 

  6. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50(7):1363–76.

    Article  CAS  PubMed  Google Scholar 

  7. Nachbar M, Mönnich D, Boeke S, et al. Partial breast irradiation with the 1.5 T MR-linac: first patient treatment and analysis of electron return and stream effects. Radiother Oncol. 2020;145:30–5.

    Article  PubMed  Google Scholar 

  8. Chen GP, Ahunbay E, Li XA. Technical note: development and performance of a software tool for quality assurance of online replanning with a conventional Linac or MR-Linac. Med Phys. 2016;43(4):1713.

    Article  PubMed  Google Scholar 

  9. Graves SA, Snyder JE, Boczkowski A, et al. Commissioning and performance evaluation of RadCalc for the elekta unity MRI-linac. J Appl Clin Med Phys. 2019;20(12):54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Wang B, Ding S, et al. Feasibility of using a commercial collapsed cone dose engine for 1.5T MR-LINAC online independent dose verification. Phys Med. 2020;80:288–96.

    Article  PubMed  Google Scholar 

  11. Ahmad SB, Sarfehnia A, Paudel MR, et al. Evaluation of a commercial MRI Linac based monte carlo dose calculation algorithm with GEANT4. Med Phys. 2016;43(2):894–907.

    Article  PubMed  Google Scholar 

  12. Friedel M, Nachbar M, Mönnich D, Dohm O, Thorwarth D. Development and validation of a 1.5 T MR-linac full accelerator head and cryostat model for monte carlo dose simulations. Med Phys. 2019;46(11):5304–13.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Ding S, Wang B, Liu H, Huang X, Song T. Extension and validation of a GPU-monte carlo dose engine gDPM for 1.5 T MR-LINAC online independent dose verification. Med Phys. 2021;48(10):6174–83.

    Article  PubMed  Google Scholar 

  14. Cheng B, Xu Y, Li S, et al. Development and clinical application of a GPU-based monte carlo dose verification module and software for 1.5 T MR-LINAC. Med Phys. 2023;50(5):3172–83.

    Article  PubMed  Google Scholar 

  15. Interian Y, Rideout V, Kearney VP, et al. Deep nets vs expert designed features in medical physics: an IMRT QA case study. Med Phys. 2018;45(6):2672–80.

    Article  PubMed  Google Scholar 

  16. Tomori S, Kadoya N, Takayama Y, et al. A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance. Med Phys. 2018. https://doi.org/10.1002/mp.13112.

    Article  PubMed  Google Scholar 

  17. Tomori S, Kadoya N, Kajikawa T, et al. Systematic method for a deep learning-based prediction model for gamma evaluation in patient-specific quality assurance of volumetric modulated arc therapy. Med Phys. 2021;48(3):1003–18.

    Article  PubMed  Google Scholar 

  18. Matsuura T, Kawahara D, Saito A, Yamada K, Ozawa S, Nagata Y. A synthesized gamma distribution-based patient-specific VMAT QA using a generative adversarial network. Med Phys. 2023;50(4):2488–98.

    Article  PubMed  Google Scholar 

  19. Hao Y, Zhang X, Wang J, Zhao T, Sun B. Improvement of IMRT QA prediction using imaging-based neural architecture search. Med Phys. 2022;49(8):5236–43.

    Article  CAS  PubMed  Google Scholar 

  20. Snyder JE, St-Aubin J, Yaddanapudi S, et al. Commissioning of a 1.5T elekta unity MR-linac: a single institution experience. J Appl Clin Med Phys. 2020;21(7):160–72.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tozuka R, Kadoya N, Tomori S, et al. Improvement of deep learning prediction model in patient-specific QA for VMAT with MLC leaf position map and patient’s dose distribution. J Appl Clin Med Phys. 2023;24(10): e14055.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014:arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556. https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S. Accessed 1 Sept 2014.

  23. Quintero P, Benoit D, Cheng Y, Moore C, Beavis A. Machine learning-based predictions of gamma passing rates for virtual specific-plan verification based on modulation maps, monitor unit profiles, and composite dose images. Phys Med Biol. 2022. https://doi.org/10.1088/1361-6560/aca38a.

    Article  PubMed  Google Scholar 

  24. Reynolds M, Fallone BG, Rathee S. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields. Med Phys. 2014;41(9): 092103.

    Article  CAS  PubMed  Google Scholar 

  25. Ellefson ST, Culberson WS, Bednarz BP, DeWerd LA, Bayouth JE. An analysis of the ArcCHECK-MR diode array’s performance for ViewRay quality assurance. J Appl Clin Med Phys. 2017;18(4):161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang Y, Pi Y, Ma K, et al. Virtual patient-specific quality assurance of IMRT Using UNet++: classification, gamma passing rates prediction, and dose difference prediction. Front Oncol. 2021;11: 700343.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nelms BE, Zhen H, Tomé WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys. 2011;38(2):1037–44.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fredh A, Scherman JB, Fog LS, Munck af Rosenschöld P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys. 2013;40(3):031716.

    Article  PubMed  Google Scholar 

  29. Tsekas G, Bol GH, Raaymakers BW, Kontaxis C. DeepDose: a robust deep learning-based dose engine for abdominal tumours in a 1.5 T MRI radiotherapy system. Phys Med Biol. 2021;66(6):065017.

    Article  CAS  PubMed  Google Scholar 

  30. Tsekas G, Bol GH, Raaymakers BW. Robust deep learning-based forward dose calculations for VMAT on the 1.5T MR-linac. Phys Med Biol. 2022;67(22):225020.

    Article  CAS  Google Scholar 

  31. Delfs B, Schoenfeld AA, Poppinga D, et al. Magnetic fields are causing small, but significant changes of the radiochromic EBT3 film response to 6 MV photons. Phys Med Biol. 2018;63(3): 035028.

    Article  PubMed  Google Scholar 

  32. Steinmann A, O’Brien D, Stafford R, et al. Investigation of TLD and EBT3 performance under the presence of 1.5T, 0.35T, and 0T magnetic field strengths in MR/CT visible materials. Med Phys. 2019;46(7):3217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Vries JHW, Seravalli E, Houweling AC, et al. Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac. Phys Med Biol. 2018;63(2):02NT02.

    Article  PubMed  Google Scholar 

  34. Barten DLJ, Hoffmans D, Palacios MA, Heukelom S, van Battum LJ. Suitability of EBT3 GafChromic film for quality assurance in MR-guided radiotherapy at 0.35 T with and without real-time MR imaging. Phys Med Biol. 2018;63(16):165014.

    Article  PubMed  Google Scholar 

  35. Desai V, Bayouth J, Smilowitz J, Yadav P. A clinical validation of the MR-compatible delta. J Appl Clin Med Phys. 2021;22(4):82–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kadoya.

Ethics declarations

Conflict of interest

Kadoya and Tozuka has AiRato.Inc. stocks. Jingu has been awarded a research grant from Elekta.

Ethical approval

This study was approved by the Research Ethics Committee of Tohoku University Graduate School of Medicine (approval number: 2022-1-220).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozuka, R., Kadoya, N., Arai, K. et al. Assessment of the deep learning-based gamma passing rate prediction system for 1.5 T magnetic resonance-guided linear accelerator. Radiol Phys Technol (2024). https://doi.org/10.1007/s12194-024-00800-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12194-024-00800-2

Keywords

Navigation