Skip to main content
Log in

Monte carlo simulation study on the dose and dose-averaged linear energy transfer distributions in carbon ion radiotherapy

  • Technical Note
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Dose-averaged linear energy transfer (LETd) is conventionally evaluated from the relative biological effectiveness (RBE)-LETd fitted function used in the treatment planning system. In this study, we calculated the physical doses and their linear energy transfer (LET) distributions for patterns of typical CIRT beams using Monte Carlo (MC) simulation. The LETd was then deduced from the MC simulation and compared with that obtained from the conventional method. The two types of LETd agreed well with each other, except around the distal end of the spread-out Bragg peak. Furthermore, an MC simulation was conducted with the material composition of water and realistic materials. The profiles of physical dose and LETd were in good agreement for both techniques. These results indicate that the previous studies to analyze the minimum LETd in CIRT cases are valid for practical situations, and the material composition conversion to water little affects the dose distribution in the irradiation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Tobias CA, et al. Radiological physics characteristics of the extracted heavy ion beams of the bevatron. Science. 1971;174(4014):1131–4. https://doi.org/10.1126/science.174.4014.1131.

    Article  CAS  PubMed  Google Scholar 

  2. Hirao Y, et al. Heavy ion synchrotron for medical use—HIMAC project at NIRS-Japan—. Nucl Phys A. 1992;538:541–50. https://doi.org/10.1016/0375-9474(92)90803-R.

    Article  Google Scholar 

  3. Kamada T, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015;16(2):e93–100. https://doi.org/10.1016/S1470-2045(14)70412-7.

    Article  PubMed  Google Scholar 

  4. Yanagi T, et al. Dose–volume histogram and dose–surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma. Radiother Oncol. 2009;95(1):60–5. https://doi.org/10.1016/j.radonc.2009.08.041.

    Article  CAS  PubMed  Google Scholar 

  5. Okonogi N, et al. Dose-averaged linear energy transfer per se does not correlate with late rectal complications in carbon-ion radiotherapy. Radiother Oncol. 2020;153:272–8. https://doi.org/10.1016/j.radonc.2020.08.029.

    Article  CAS  PubMed  Google Scholar 

  6. Matsumoto S, et al. Unresectable chondrosarcomas treated with carbon ion radiotherapy: relationship between dose-averaged linear energy transfer and local recurrence. Anticancer Res. 2020;40(11):6429–35. https://doi.org/10.21873/anticanres.14664.

    Article  CAS  PubMed  Google Scholar 

  7. Mohamad O, et al. Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study. Lancet Oncol. 2019;20(5):674–85. https://doi.org/10.1016/S1470-2045(18)30931-8.

    Article  PubMed  Google Scholar 

  8. Hagiwara Y, et al. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin Translational Radiat Oncol. 2020;21:19–24. https://doi.org/10.1016/j.ctro.2019.11.002.

    Article  Google Scholar 

  9. Kanematsu N, et al. Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the national institute of radiological sciences, Japan. Radiol Phys Technol. 2018;11:242–7. https://doi.org/10.1007/s12194-018-0444-7.

    Article  PubMed  Google Scholar 

  10. Anakura M, et al. Improved algorithm for estimation of linear energy transfer in carbon ion radiotherapy plans. Anticancer Res. 2023;43(7):2975–84. https://doi.org/10.21873/anticanres.16468.

    Article  CAS  PubMed  Google Scholar 

  11. Kanai T, et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phy. 1999;44(1):201–10. https://doi.org/10.1016/S0360-3016(98)00544-6.

    Article  CAS  Google Scholar 

  12. Sato T, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–90. https://doi.org/10.1080/00223131.2017.1419890.

    Article  CAS  Google Scholar 

  13. Furuta T, et al. Development of the DICOM-based monte carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Phys Med Biol. 2022;67: 145002. https://doi.org/10.1088/1361-6560/ac7998.

    Article  CAS  Google Scholar 

  14. ATIMA. https://web-docs.gsi.de/~weick/atima/ Accessed 16 May 2023.

  15. Iida K, et al. Formula for proton-nucleus reaction cross section at intermediate energies and its application. J Phys Soc Jpn. 2007;76(4): 044201. https://doi.org/10.1143/JPSJ.76.044201.

    Article  CAS  Google Scholar 

  16. Chang W, et al. Technical note: validation of a material assignment method for a retrospective study of carbon-ion radiotherapy using monte carlo simulation. J Radiat Res. 2021;62(5):1–10. https://doi.org/10.1093/jrr/rrab028.

    Article  CAS  Google Scholar 

  17. ICRP, Adult Reference Computational Phantoms, ICRP Publication 110, Ann. ICRP, Vol. 39, No. 2 (2009)

  18. Schneider W, et al. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45:459. https://doi.org/10.1088/0031-9155/45/2/314.

    Article  CAS  PubMed  Google Scholar 

  19. Parodi K, et al. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Radiat Oncol Biol Phys. 2007;68(3):920–34. https://doi.org/10.1016/j.ijrobp.2007.01.063.

    Article  Google Scholar 

  20. Paganetti H, et al. Clinical implementation of full monte carlo dose calculation in proton beam therapy. Phys Med Biol. 2008;53:4825. https://doi.org/10.1088/0031-9155/53/17/023.

    Article  PubMed  Google Scholar 

  21. Kry SF, et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44(10):e391–429. https://doi.org/10.1002/mp.12462.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Ishikawa.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest for this study.

Ethics approval

All procedures involving human participants were performed in accordance with the ethical standards of the Institutional Review Board (IRB) and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Ethical approval was not required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, A., Koba, Y., Furuta, T. et al. Monte carlo simulation study on the dose and dose-averaged linear energy transfer distributions in carbon ion radiotherapy. Radiol Phys Technol (2024). https://doi.org/10.1007/s12194-024-00798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12194-024-00798-7

Keywords

Navigation