Skip to main content
Log in

Evaluation of hafnium oxide nanoparticles imaging characteristics as a contrast agent in X-ray computed tomography

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This research aimed to compare the quantitative imaging attributes of synthesized hafnium oxide nanoparticles (NPs) derived from UiO-66-NH2(Hf) and two gadolinium- and iodine-based clinical contrast agents (CAs) using cylindrical phantom. Aqueous solutions of the studied CAs, containing 2.5, 5, and 10 mg/mL of HfO2NPs, gadolinium, and iodine, were prepared. Constructed within a cylindrical phantom, 15 cc small tubes were filled with CAs. Maintaining constant mAs, the phantom underwent scanning at tube voltage variations from 80 to 140 kVp. The CT numbers were quantified in Hounsfield units (HU), and the contrast-to-noise ratios (CNR) were calculated within delineated regions of interest (ROI) for all CAs. The HfO2NPs at 140 kVp and concentration of 2.5 mg/ml exhibited 2.3- and 1.3-times higher CT numbers than iodine and gadolinium, respectively. Notably, gadolinium consistently displayed higher CT numbers than iodine across all exposure techniques and concentrations. At the highest tube potential, the maximum amount of the CAs CT numbers was attained, and at 140 kVp and concentration of 2.5 mg/ml of HfO2NPs the CNR surpassed iodine by 114%, and gadolinium by 30%, respectively. HfO2NPs, as a contrast agent, demonstrated superior image quality in terms of contrast and noise in comparison to iodine- and gadolinium-based contrast media, particularly at higher energies of X-ray in computed tomography. Thus, its utilization is highly recommended in CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data in support of the findings of this paper are available within the article.

References

  1. De La Vega JC, Häfeli UO. Utilization of nanoparticles as x-ray contrast agents for diagnostic imaging applications. Contrast Media Mol Imaging. 2015;10(2):81–95.

    Article  PubMed  Google Scholar 

  2. Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, et al. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg. 2001;6(3):131–42.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma B, Panta O, Lohani B, Khanal U. Computed tomography in the evaluation of pathological lesions of paranasal sinuses. J Nepal Health Res Counc. 2015;13(30):116–20.

    CAS  PubMed  Google Scholar 

  4. Bonnin A, Duvauchelle P, Kaftandjian V, Ponard P. Concept of effective atomic number and effective mass density in dual-energy x-ray computed tomography. Nucl Instrum Methods Phys Res, Sect B. 2014;318:223–31.

    Article  CAS  Google Scholar 

  5. Vrbaški S, Arana Pena LM, Brombal L, Donato S, Taibi A, Contillo A, et al. Characterization of breast tissues in density and effective atomic number basis via spectral x-ray computed tomography. Phys Med Biol. 2023;68(14):145019.

    Article  Google Scholar 

  6. Amato C, Klein L, Wehrse E, Rotkopf LT, Sawall S, Maier J, et al. Potential of contrast agents based on high-z elements for contrast-enhanced photon-counting computed tomography. Med Phys. 2020;47(12):6179–90.

    Article  CAS  PubMed  Google Scholar 

  7. Sugawara H, Suzuki S, Katada Y, Ishikawa T, Fukui R, Yamamoto Y, et al. Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging: advantages and disadvantages. Eur Radiol. 2019;29:1400–7.

    Article  PubMed  Google Scholar 

  8. Cormode DP, Skajaa T, Van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haller C, Hizoh I. The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro. Invest Radiol. 2004;39(3):149–54.

    Article  CAS  PubMed  Google Scholar 

  10. Nazıroğlu M, Yoldaş N, Uzgur EN, Kayan M. Role of contrast media on oxidative stress, Ca 2+ signaling and apoptosis in kidney. J Membr Biol. 2013;246:91–100.

    Article  PubMed  Google Scholar 

  11. Uca YO, Hallmann D, Hesse B, Seim C, Stolzenburg N, Pietsch H, et al. Microdistribution of magnetic resonance imaging contrast agents in atherosclerotic plaques determined by LA-ICP-MS and SR-μXRF imaging. Mol Imag Biol. 2021;23:382–93.

    Article  CAS  Google Scholar 

  12. Perelli F, Turrini I, Giorgi MG, Renda I, Vidiri A, Straface G, et al. Contrast agents during pregnancy: pros and cons when really needed. Int J Environ Res Public Health. 2022;19(24):16699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhave G, Lewis JB, Chang SS. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol. 2008;180(3):830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nadjiri J, Pfeiffer D, Straeter AS, Noël PB, Fingerle A, Eckstein H-H, et al. Spectral computed tomography angiography with a gadolinium-based contrast agent. J Thorac Imaging. 2018;33(4):246–53.

    Article  PubMed  Google Scholar 

  15. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  16. FitzGerald PF, Colborn RE, Edic PM, Lambert JW, Torres AS, Bonitatibus PJ Jr, et al. CT image contrast of high-Z elements: phantom imaging studies and clinical implications. Radiology. 2016;278(3):723–33.

    Article  PubMed  Google Scholar 

  17. Berger M, Bauser M, Frenzel T, Hilger CS, Jost G, Lauria S, et al. Hafnium-based contrast agents for X-ray computed tomography. Inorg Chem. 2017;56(10):5757–61.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes DR. Corrosion of hafnium and hafnium alloys. In: Cramer SD, Covino BS, Jr., editors. Corrosion: materials, vol 13B. ASM International; 2005.

  19. Zhang C-B, Li W-D, Zhang P, Wang B-T. First-principles calculations of phase transition, elasticity, phonon spectra, and thermodynamic properties for hafnium. Comput Mater Sci. 2019;157:121–31.

    Article  CAS  Google Scholar 

  20. Bonvalot S, Rutkowski P, Thariat J, Carrere S, Sunyach M-P, Saada E, et al. A phase II/III trial of hafnium oxide nanoparticles activated by radiotherapy in the treatment of locally advance soft tissue sarcoma of the extremity and trunk wall. Ann Oncol. 2018;29:viii753.

    Article  Google Scholar 

  21. Jost G, McDermott M, Gutjahr R, Nowak T, Schmidt B, Pietsch H. New contrast media for K-edge imaging with photon-counting detector CT. Invest Radiol. 2023;58(7):515–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, et al. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions. Chem Soc Rev. 2022;51(18):7810–82.

    Article  CAS  PubMed  Google Scholar 

  23. Hu Z, Peng Y, Kang Z, Qian Y, Zhao D. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorg Chem. 2015;54(10):4862–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bushong SC. Radiologic science for technologists e-book: radiologic science for technologists e-book. Elsevier Health Sciences; 2020.

  25. Murugasamy J, Ramalakshmi N, Pandiyan R, Ayyaru S, Jayaraman V, Ahn Y-H. Synthesis and characterization of sulfonated hafnium oxide nanoparticles for energy storage devices. Inorg Chem Commun. 2022;141: 109615.

    Article  CAS  Google Scholar 

  26. Dekrafft KE, Boyle WS, Burk LM, Zhou OZ, Lin W. Zr-and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. J Mater Chem. 2012;22(35):18139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roessler A-C, Hupfer M, Kolditz D, Jost G, Pietsch H, Kalender WA. High atomic number contrast media offer potential for radiation dose reduction in contrast-enhanced computed tomography. Invest Radiol. 2016;51(4):249–54.

    Article  CAS  PubMed  Google Scholar 

  28. Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B. Photon-counting CT review. Physica Med. 2020;79:126–36.

    Article  Google Scholar 

  29. Ibrahim M, Parmar H, Christodoulou E, Mukherji S. Raise the bar and lower the dose: current and future strategies for radiation dose reduction in head and neck imaging. Am J Neuroradiol. 2014;35(4):619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrero A, Gutjahr R, Halaweish AF, Leng S, McCollough CH. Characterization of urinary stone composition by use of whole-body, photon-counting detector CT. Acad Radiol. 2018;25(10):1270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Long Y, Fessler JA. Multi-material decomposition using statistical image reconstruction for spectral CT. IEEE Trans Med Imaging. 2014;33(8):1614–26.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nowak T, Hupfer M, Brauweiler R, Eisa F, Kalender WA. Potential of high-Z contrast agents in clinical contrast-enhanced computed tomography. Med Phys. 2011;38(12):6469–82.

    Article  CAS  PubMed  Google Scholar 

  33. Su Y, Liu S, Guan Y, Xie Z, Zheng M, Jing X. Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials. 2020;255: 120110.

    Article  CAS  PubMed  Google Scholar 

  34. Mesbahi A, Famouri F, Ahar MJ, Ghaffari MO, Ghavami SM. A study on the imaging characteristics of gold nanoparticles as a contrast agent in x-ray computed tomography. Polish Journal of Medical Physics and Engineering. 2017;23(1):9.

    Article  Google Scholar 

  35. McGinnity TL, Dominguez O, Curtis TE, Nallathamby PD, Hoffman AJ, Roeder RK. Hafnia (HfO 2) nanoparticles as an x-ray contrast agent and mid-infrared biosensor. Nanoscale. 2016;8(28):13627–37.

    Article  CAS  PubMed  Google Scholar 

  36. Gerward L, Guilbert N, Jensen KB, Levring H. x-ray absorption in matter. Reengineering XCOM Radiat Phys Chem. 2001;60(1–2):23–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Sanipour, a CT scan technologist at Shiraz’s Ali Asghar hospital, who kindly assisted us in acquiring CT images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arash Safari, Alireza Oveisi or Masoud Haghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, A., Mahdavi, M., Fardid, R. et al. Evaluation of hafnium oxide nanoparticles imaging characteristics as a contrast agent in X-ray computed tomography. Radiol Phys Technol (2024). https://doi.org/10.1007/s12194-024-00797-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12194-024-00797-8

Keywords

Navigation