Skip to main content
Log in

Commissioning and dosimetric verification of volumetric modulated arc therapy for multiple modalities using electronic portal imaging device-based 3D dosimetry system: a novel approach

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to validate an electronic portal imaging device (EPID) based 3-dimensional (3D) dosimetry system for the commissioning of volumetric modulated arc therapy (VMAT) delivery for flattening filter (FF) and flattening filter free (FFF) modalities based on test suites developed according to American Association of Physicists in Medicine Task Group 119 (AAPM TG 119) and pre-treatment patient specific quality assurance (PSQA).With ionisation chamber, multiple-point measurement in various planes becomes extremely difficult and time-consuming, necessitating repeated exposure of the plan. The average agreement between measured and planned doses for TG plans is recommended to be within 3%, and both the ionisation chamber and PerFRACTION™ measurement were well within this prescribed limit. Both point dose differences with the planned dose and gamma passing rates are comparable with TG reported multi-institution results. From our study, we found that no significant differences were found between FF and FFF beams for measurements using PerFRACTION™ and ion chamber. Overall, PerFRACTION™ produces acceptable results to be used for commissioning and validating VMAT and for performing PSQA. The findings support the feasibility of integrating PerFRACTION™ into routine quality assurance procedures for VMAT delivery. Further multi-institutional studies are recommended to establish global baseline values and enhance the understanding of PerFRACTION’s capabilities in diverse clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data from this study are available from the corresponding author upon reasonable request.

References

  1. Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE. Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiation Oncol Biol Phys. 2008;71(1):S71–5.

    Article  Google Scholar 

  2. Ezzell GA, Burmeister JW, Dogan N, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM task group 119. Med Phys. 2009;36(11):5359–73.

    Article  PubMed  Google Scholar 

  3. Mynampati DK, Yaparpalvi R, Hong L, Kuo HC, Mah D. Application of AAPM TG 119 to volumetric arc therapy (VMAT). J Appl Clin Med Phys. 2012;13:108–16.

    Article  PubMed Central  Google Scholar 

  4. Wen N, Zhao B, Kim J, Chin-Snyder K, Bellon M, Glide-Hurst C, Barton K, Chen D, Chetty IJ. IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases. J Appl Clin Med Phys. 2014;15(5):74–88.

    Article  PubMed Central  Google Scholar 

  5. Nainggolan A. Dosimetric evaluation of volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) using AAPM TG 119 protocol. J Biomed Phys Eng. 2019;9(4):395.

    Google Scholar 

  6. Sangaiah A, Ganesh KM, Ramalingam K, Karthikeyan K, Jagadheeskumar N. Dosimetric validation of volumetric modulated arc therapy (VMAT) using AAPM TG-119 benchmark plans in an upgraded CLINAC 2100CD for flattening filter free (FFF) photon beams. Asian Pacific J Cancer Prev APJCP. 2017;18(11):2965.

    Google Scholar 

  7. Laugeman E, Heermann A, Hilliard J, Watts M, Roberson M, Morris R, Goddu S, Sethi A, Zoberi I, Kim H, Mutic S. Comprehensive validation of halcyon 2.0 plans and the implementation of patient specific QA with multiple detector platforms. J Appl Clin Med Phys. 2020;21(7):39–48.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Simiele E, Capaldi D, Breitkreutz D, Han B, Yeung T, White J, Zaks D, Owens M, Maganti S, Xing L, Surucu M. Treatment planning system commissioning of the first clinical biology-guided radiotherapy machine. J Appl Clin Med Phys. 2022;23(8): e13638.

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Roover R, Crijns W, Poels K, Michiels S, Nulens A, Vanstraelen B, Petillion S, De Brabandere M, Haustermans K, Depuydt T. Validation and IMRT/VMAT delivery quality of a preconfigured fast-rotating O-ring linac system. Med Phys. 2019;46(1):328–39.

    Article  PubMed  Google Scholar 

  10. Li Y, Wang B, Ding S, Liu H, Liu B, Xia Y, Song T, Huang X. Feasibility of using a commercial collapsed cone dose engine for 15 T MR-LINAC online independent dose verification. Physica Med. 2020;80:288–96.

    Article  Google Scholar 

  11. Loughery B, Knill C, Silverstein E, Zakjevskii V, Masi K, Covington E, Snyder K, Song K, Snyder M. Multi-institutional evaluation of end-to-end protocol for IMRT/VMAT treatment chains utilizing conventional linacs. Med Dosim. 2019;44(1):61–6.

    Article  PubMed  Google Scholar 

  12. Kumar L, Bhushan M, Kishore V, Yadav G, Gurjar OP. Dosimetric validation of Acuros® XB algorithm for RapidArc™ treatment technique: a post software upgrade analysis. J Cancer Res Ther. 2021;17(6):1491–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wang T, Guo P, Lis M, Wang Q. Acceptance test for fan beam CT linac treatment planning system using AAPM TG119 test cases. Int J Radiation Res. 2023;21(3):571–6.

    Article  Google Scholar 

  14. Bismack B, Dolan J, Laugeman E, Gopal A, Wen N, Chetty I. Model refinement increases confidence levels and clinical agreement when commissioning a three-dimensional secondary dose calculation system. J Appl Clin Med Phys. 2022;23(6): e13590.

    Article  PubMed  PubMed Central  Google Scholar 

  15. SunCHECK™ Patient. PerFRACTION™ 3D pre-treatment QA and in-vivo monitoring. Melbourne: Sun Nuclear Corporation; 2017.

    Google Scholar 

  16. IMRT User Guide Computerised Imaging Reference Systems Inc (CIRS), Publication: 002 IMRT UG 080420. https://www.sunnuclear.com/uploads/documents/datasheets/IMRTFreepointPhantom_093022.pdf

  17. Jursinic PA, Sharma R, Reuter J. MapCHECK used for rotational IMRT measurements: step-and-shoot, tomotherapy, RapidArc. Med Phys. 2010;37(6Part1):2837–46.

    Article  PubMed  Google Scholar 

  18. Howell RM, Smith IP, Jarrio CS. Establishing action levels for EPID-based QA for IMRT. J Appl Clin Med Phys. 2008;9(3):16–25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  20. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, Li H, Wijesooriya K, Shi J, Xia P, Papanikolaou N. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM task group No. 218. Med Phys. 2018;45(4):e53-83.

    Article  PubMed  Google Scholar 

  21. Dogan N, Mijnheer BJ, Padgett K, Nalichowski A, Wu C, Nyflot MJ, Olch AJ, Papanikolaou N, Shi J, Holmes SM, Moran J. AAPM task group report 307: use of EPIDs for patient-specific IMRT and VMAT QA. Med Phys. 2023;50(8):e865-903.

    Article  PubMed  Google Scholar 

  22. Alhazmi A, Gianoli C, Neppl S, Martins J, Veloza S, Podesta M, Verhaegen F, Reiner M, Belka C, Parodi K. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA. Phys Med Biol. 2018;63(11): 115002.

    Article  PubMed  Google Scholar 

  23. Mijnheer B, Jomehzadeh A, González P, Olaciregui-Ruiz I, Rozendaal R, Shokrani P, Spreeuw H, Tielenburg R, Mans A. Error detection during VMAT delivery using EPID-based 3D transit dosimetry. Physica Med. 2018;1(54):137–45.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank medical physics team members Mr Shubham Gadge, Mr Sarthak kar, Ms Dayawoti Pegu, Mr Rajashekhar and Mr Atyantkumar Hota and radiation therapists of HBCH&RC for their assistance during the work. The authors also would like to thank Mr Ventakesh from SNC for his valuable feedback.

Funding

The authors declare that no funds, grants, or other support were received during this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm the contribution to the paper as follows:

1. Study conception and design: Raghavendra Hajare, Rituraj Kalita.

2. Data collection, analysis and interpretation of results: all authors.

3. Manuscript preparation: Raghavendra Hajare, Sreelakshmi K K.

Corresponding author

Correspondence to Raghavendra Hajare.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by institutional ethics committee.

Consent to participations

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajare, R., K K, S., Kumar, A. et al. Commissioning and dosimetric verification of volumetric modulated arc therapy for multiple modalities using electronic portal imaging device-based 3D dosimetry system: a novel approach. Radiol Phys Technol 17, 412–424 (2024). https://doi.org/10.1007/s12194-024-00792-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-024-00792-z

Keywords

Navigation