Skip to main content
Log in

Efficient quality assurance for isocentric stability in stereotactic body radiation therapy using machine learning

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study aims to predict isocentric stability for stereotactic body radiation therapy (SBRT) treatments using machine learning (ML), covers the challenges of manual assessment and computational time for quality assurance (QA), and supports medical physicists to enhance accuracy. The isocentric parameters for collimator (C), gantry (G), and table (T) tests were conducted with the RUBY phantom during QA using TrueBeam linac for SBRT. This analysis combined statistical features from the IsoCheck EPID software. Five ML models, including logistic regression (LR), decision tree (DT), random forest (RF), naive Bayes (NB), and support vector machines (SVM), were used to predict the outcome of the QA procedure. 247 Winston–Lutz (WL) tests were collected from 2020 to 2022. In our study, both DT and RF achieved the highest score on test accuracy (Acc. test) ranging from 93.5% to 99.4%, and area under curve (AUC) values from 90 to 100% on three modes (C, G, and T). The precision, recall, and F1 scores indicate the DT model consistently outperforms other ML models in predicting isocenter stability deviation in QA. The QA assessment using ML models can assist error prediction early to avoid potential harm during SBRT and ensure safe and effective patient treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brodin NP, et al. Organ-at-risk dose prediction using a machine learning algorithm: Clinical validation and treatment planning benefit for lung SBRT. J Appl Clin Med Phys. 2022;23(6): e13609. https://doi.org/10.1002/acm2.13609.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Song CW, et al. Biological principles of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS): indirect cell death. Int J Radiation Oncol Biol Phys. 2021;110(1):21–34. https://doi.org/10.1016/j.ijrobp.2019.02.047.

    Article  Google Scholar 

  3. Lee YC, Kim Y. A patient-specific QA comparison between 2D and 3D diode arrays for single-lesion SRS and SBRT treatments. J Radiosurg SBRT. 2021;7(4):295.

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  4. Moustakis C, Ebrahimi Tazehmahalleh F, Elsayad K, Fezeu F, Scobioala S. A novel approach to SBRT patient quality assurance using EPID-based real-time transit dosimetry: a step to QA with in vivo EPID dosimetry. Strahlenther Onkol. 2020;196:182–92. https://doi.org/10.1007/s00066-019-01549-z.

    Article  PubMed  Google Scholar 

  5. Shariff M, et al. End-to-end testing for stereotactic radiotherapy including the development of a Multi-Modality phantom. Z Med Phys. 2022. https://doi.org/10.1016/j.zemedi.2022.11.006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Woods K, Rong Y. Technical report: TG-142 compliant and comprehensive quality assurance tests for respiratory gating. Med Phys. 2015;42(11):6488–97. https://doi.org/10.1118/1.4932363.

    Article  PubMed  Google Scholar 

  7. Du W, et al. A quality assurance procedure to evaluate cone-beam CT image center congruence with the radiation isocenter of a linear accelerator. J Appl Clin Med Phys. 2010;11(4):15–26. https://doi.org/10.1120/jacmp.v11i4.3297.

    Article  PubMed Central  Google Scholar 

  8. Valdes G, Morin O, Valenciaga Y, Kirby N, Pouliot J, Chuang C. Use of TrueBeam developer mode for imaging QA. J Appl Clin Med Phys. 2015;16(4):322–33. https://doi.org/10.1120/jacmp.v16i4.5363.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Du W, Johnson JL, Jiang W, Kudchadker RJ. On the selection of gantry and collimator angles for isocenter localization using Winston-Lutz tests. J Appl Clin Med Phys. 2016;17(1):167–78. https://doi.org/10.1120/jacmp.v17i1.5792.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Du W, Gao S. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator. Med Phys. 2011;38(8):4575–8. https://doi.org/10.1118/1.3609098.

    Article  PubMed  Google Scholar 

  11. Rowshanfarzad P, et al. Detection and correction for EPID and gantry sag during arc delivery using cine EPID imaging. Med Phys. 2012;39(2):623–35. https://doi.org/10.1118/1.3673958.

    Article  PubMed  Google Scholar 

  12. Kang H, Patel R, Roeske JC. Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. J Appl Clin Med Phys. 2019;20(10):127–33. https://doi.org/10.1002/acm2.12723.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Winkler P, Bergmann H, Stuecklschweiger G, Guss H. Introducing a system for automated control of rotation axes, collimator and laser adjustment for a medical linear accelerator. Phys Med Biol. 2003;48(9):1123. https://doi.org/10.1088/0031-9155/48/9/303.

    Article  PubMed  Google Scholar 

  14. Valdes G, et al. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016;43(7):4323–34. https://doi.org/10.1118/1.4953835.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  15. Claessens M, et al. Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm. Phys Med Biol. 2022;67(11): 115014. https://doi.org/10.1088/1361-6560/ac6fad.

    Article  Google Scholar 

  16. Bedford JL, Hanson IM. A recurrent neural network for rapid detection of delivery errors during real-time portal dosimetry. Phys Imaging Radiation Oncol. 2022;1(22):36–43. https://doi.org/10.1016/j.phro.2022.03.004.

    Article  Google Scholar 

  17. Poppinga D, et al. Evaluation of the RUBY modular QA phantom for planar and non-coplanar VMAT and stereotactic radiations. J Appl Clin Med Phys. 2020;21(10):69–79. https://doi.org/10.1002/acm2.13006.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chojnowski JM, Sykes JR, Thwaites DI. A novel method to determine linac mechanical isocenter position and size and examples of specific QA applications. J Appl Clin Med Phys. 2021;22(7):44–55. https://doi.org/10.1002/acm2.13257.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brace OJ, et al. Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields. J Appl Clin Med Phys. 2020;21(8):278–88. https://doi.org/10.1002/acm2.12906.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Valdes G, Scheuermann R, Hung CY, Olszanski A, Bellerive M, Solberg TD. A mathematical framework for virtual IMRT QA using machine learning. Med Phys. 2016;43(7):4323–34. https://doi.org/10.1118/1.4953835.

    Article  CAS  PubMed  Google Scholar 

  21. Kalet AM, Luk SM, Phillips MH. Radiation therapy quality assurance tasks and tools: the many roles of machine learning. Med Phys. 2020;47(5):e168–77. https://doi.org/10.1002/mp.13445.

    Article  PubMed  Google Scholar 

  22. Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient noise reduction in speech processing. Berlin: Springer; 2009.

    Book  Google Scholar 

  23. Terlizzi M, Limkin E, Sellami N, Louvel G, Blanchard P. Is single fraction the future of stereotactic body radiation therapy (SBRT)? A critical appraisal of the current literature. Clin Transl Radiation Oncol. 2023;25: 100584. https://doi.org/10.1016/j.ctro.2023.100584.

    Article  Google Scholar 

  24. Hanley J, Arjomandy B, Ma L, Aguirre F, AAPM Task Group 198 Report, et al. An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys. 2021. https://doi.org/10.1002/mp.14992.

    Article  PubMed  Google Scholar 

  25. Chang Z, et al. Imaging system QA of a medical accelerator, Novalis Tx, for IGRT per TG 142: our 1 year experience. J Appl Clin Med Phys. 2012;13(4):113–40. https://doi.org/10.1120/jacmp.v13i4.3754.

    Article  PubMed Central  Google Scholar 

  26. Chojnowski JM, Sykes JR, Thwaites DI. Towards zero radiation isocentre size: minimising radiation beam isocentricity on Elekta linear accelerators by means of optimising look-up tables. Phys Eng Sci Med. 2021;44:557–63. https://doi.org/10.1007/s13246-021-00981-9.

    Article  PubMed  Google Scholar 

  27. H Miura S Ozawa S Tsuda K Yamada Y Nagata 2017. Stability assessment of radiation isocenter with the gimbaled linac system 5 1 3 6

  28. Nyflot MJ, Cao N, Meyer J, Ford EC. Improved accuracy for noncoplanar radiotherapy: an EPID-based method for submillimeter alignment of linear accelerator table rotation with MV isocenter. J Appl Clin Med Phys. 2014;15(2):151–9. https://doi.org/10.1120/jacmp.v15i2.4682.

    Article  PubMed Central  Google Scholar 

  29. Kry SF, Jones J, Childress NL. Implementation and evaluation of an end-to-end IGRT test. J Appl Clin Med Phys. 2012;13(5):46–53. https://doi.org/10.1120/jacmp.v13i5.3939.

    Article  PubMed Central  Google Scholar 

  30. Solberg TD, et al. Commissioning and initial stereotactic ablative radiotherapy experience with Vero. J Appl Clin Med Phys. 2014;15(2):205–25. https://doi.org/10.1120/jacmp.v15i2.4685.

    Article  PubMed Central  Google Scholar 

  31. Zacharopoulos NG, Fenyes DA. A formalism and methodology for measurement and control of LINAC isocenter. J Appl Clin Med Phys. 2023;3: e13981. https://doi.org/10.1002/acm2.13981.

    Article  Google Scholar 

Download references

Funding

No specific grant was given to this research by funding organizations in the public, private, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SS, SAB and LS; methodology, SS, KI; software, MAA.; formal analysis, SS, MAA.; investigation, SS.; resources, LS; data curation, KI; writing—original draft preparation, SS, MAA.; writing—review and editing, SS, LS, MAA. supervision, SAB, LS; visualization, LS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sana Salahuddin.

Ethics declarations

Conflict of intrest

The authors affirm that they do not have any competing interests.

Ethical approval

There are no animal or human subjects used in any of the experiments in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, S., Buzdar, S.A., Iqbal, K. et al. Efficient quality assurance for isocentric stability in stereotactic body radiation therapy using machine learning. Radiol Phys Technol 17, 219–229 (2024). https://doi.org/10.1007/s12194-023-00768-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00768-5

Keywords

Navigation