Skip to main content

Advertisement

Log in

Validation of the DoseCalcs Monte Carlo code for estimating the 18F S-values for ICRP adult and 15-year-old male and female phantoms

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Internal radiation exposure using radiopharmaceuticals, as in nuclear medicine procedures, necessitates the estimation of the S-value to determine and improve the estimates of absorbed doses in at-risk organs and tissues. The S value is defined as the absorbed dose in the target organ per unit of nuclear transformation in the source organ. It is calculated using the specific absorbed fraction, which is an important quantity that connects the deposited energy in the target and emitting source organs. In this study, we applied DoseCalcs, a new Geant4-based tool, to estimate the S values of \(^{18}\)F using nuclear data from ICRP Publication 107. Geometrical data from ICRP Publications 110 and 143 were used to select four models representing male and female phantoms for adults and 15 years old to study the variability in the S-values arising from variations in anatomy and initial energy validations, because we used the \(\beta\) mean energy instead of the full beta spectrum. The \(^{18}\)F-released photons and \(\beta\) from 26 source organs were tracked using the Geant4 Livermore package. Accordingly, the S-values were calculated for 141 target organs. The results for the adult male and female phantoms were compared with the OpenDose reference data. These results agreed well with OpenDose, the average ratio for self-absorption S-values was 1.015, and the average ratios for the cross-irradiation were 1.2 and 1.22 for the AM and AF, respectively. This indicates the accuracy of DoseCalcs for subsequent use in estimating \(^{18}\)F S-values using voxelized geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ollinger JM, Fessler JA. Positron-emission tomography. Ieee Signal Process Mag. 1997;14(1):43–55.

    Article  Google Scholar 

  2. McKeighen RE. A review of gamma camera technology for medical imaging. Nuclear Med Ultrasonics Thermogr. 1980; chap. 4, p. 119–63.

  3. Huang B, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.

    Article  PubMed  Google Scholar 

  4. Glatting G, Lassmann M. Nuclear medicine dosimetry: quantitative imaging and dose calculations. Z Med Phys. Dec.2011;21:246–7.

    Article  PubMed  Google Scholar 

  5. Endo M. History of medical physics. Radiol Phys Technol. Dec.2021;14:345–57.

    Article  PubMed  Google Scholar 

  6. Alauddin MM. Positron emission tomography (pet) imaging with 18f-based radiotracers. Am J Nucl Med Mol imaging. 2012;2(1):55.

    CAS  PubMed  Google Scholar 

  7. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of f-18 fluorodeoxyglucose positron emission tomography (fdg pet). J Thorac Cardiovasc Surg. 1995;110(1):130–40.

    Article  CAS  PubMed  Google Scholar 

  8. Spermon J, De Geus-Oei L, Kiemeney L, Witjes J, Oyen W. The role of 18fluoro-2-deoxyglucose positron emission tomography in initial staging and re-staging after chemotherapy for testicular germ cell tumours. BJU Int. 2002;89(6):549–56.

    Article  CAS  PubMed  Google Scholar 

  9. Sodickson L, Bowman W, Stephenson J, Weinstein R. Single-quantum annihilation of positrons. Phys Rev. 1961;124(6):1851.

    Article  CAS  Google Scholar 

  10. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (pett). Radiology. 1975;114(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  11. Partridge S, Timothy A, O’doherty M, Hain S, Rankin S, Mikhaeel G. T2-fluorine-18-fluoro-2-deoxy-d glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11(10):1273–80.

    Article  CAS  PubMed  Google Scholar 

  12. Ahmadi N, Karimian A, Nasrabadi M, Rahmim A. Assessment of fetal and maternal radiation absorbed dose in 18f-fdg pet imaging. Int J Radiat Res. 2019;17(4):651–7.

    Google Scholar 

  13. Dunn WL, Shultis JK. Exploring Monte Carlo methods. Elsevier; 2011.

    Google Scholar 

  14. Shi C, Xu XG, Stabin MG. Saf values for internal photon emitters calculated for the rpi-p pregnant-female models using Monte Carlo methods. Med Phys. 2008;35(7Part1):3215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caon M. Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys. Feb.2004;42:229–35.

    Article  PubMed  Google Scholar 

  16. Kim KM, Lee MS, Suh MS, Selvam HSMS, Tan TH, Cheon GJ, Kang KW, Lee JS. Comparison of voxel s-value methods for personalized voxel-based dosimetry of 177lu-dotatate. Med Phys. 2022;49(3):1888–901.

    Article  PubMed  Google Scholar 

  17. Zankl M. Adult male and female reference computational phantoms (ICRP publication 110). Jpn J Health Phys. 2010;45(4):357–69.

    Article  Google Scholar 

  18. Bolch WE, Eckerman K, Endo A, Hunt JGS, Jokisch DW, Kim CH, Kim K-P, Lee C, Li J, Petoussi-Henss N, Sato T, Schlattl H, Yeom YS, Zankl M. ICRP publication 143: paediatric reference computational phantoms. Ann ICRP. 2020;49:5–297.

    Article  CAS  PubMed  Google Scholar 

  19. Eckerman K, Endo A. ICRP publication 107. nuclear decay data for dosimetric calculations. Ann ICRP. 2008;38(3):7–96.

    CAS  PubMed  Google Scholar 

  20. Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, Stabin M, Taylor D, Bolch W, Carlsson S, Eckerman K, Giussani A, Söderberg L, Valind S, ICRP. Radiation dose to patients from radiopharmaceuticals: a compendium of current information related to frequently used substances. Ann ICRP. 2015;44:7–321.

    Article  CAS  PubMed  Google Scholar 

  21. Stabin MG. Mirdose: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 1996;37(3):538–46.

    CAS  PubMed  Google Scholar 

  22. Stabin MG, Sparks RB, Crowe E. Olinda/exm: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  23. Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, Dixon DA, Martz RL, Hughes HG, Cox LJ, Zukaitis AJ, Armstrong JC, Forster RA, Casswell L. MCNP version 6.2 release notes. Tech. Rep., 2018.

  24. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D. Geant4–a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250–303.

    Article  CAS  Google Scholar 

  25. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore PF, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira JM, Visvikis D, Van de Walle R, Wieërs E, Morel C. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stabin MG, Xu XG, Emmons MA, Segars WP, Shi C, Fernald MJ. Radar reference adult, pediatric, and pregnant female phantom series for internal and external dosimetry. J Nucl Med. 2012;53(11):1807–13.

    Article  PubMed  Google Scholar 

  27. Ghalbzouri TE, Bardouni TE, Bakkali JE, Satti H, Arectout A, Berriban I, Nouayti A, Yerrou R. Photon-specific absorbed fraction estimates in stylized ORNL and voxelized ICRP adult male phantoms using a new developed geant4-based code “DoseCalcs”: a validation study. Radiol Phys Technol. 2022. https://dosecalcs.readthedocs.io/en/latest/index.html.

  28. Parach AA, Rajabi H, Askari MA. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Radiat Environ Biophys. 2011;50:441–50.

    Article  PubMed  Google Scholar 

  29. Chauvin M, Borys D, Botta F, Bzowski P, Dabin J, Denis-Bacelar AM, Desbrée A, Falzone N, Lee BQ, Mairani A, Malaroda A, Mathieu G, McKay E, Mora-Ramirez E, Robinson AP, Sarrut D, Struelens L, Gil AV, Bardiès M. OpenDose: open-access resource for nuclear medicine dosimetry. J Nucl Med. 2020;61:1514–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kawrakow I, Rogers D. The egsnrc code system. NRC Report PIRS-701, NRC, Ottawa, vol. 17, 2000.

  31. Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega PG, Mairani A, Sala PR, Smirnov G, Vlachoudis V. The fluka code: developments and challenges for high energy and medical applications. Nucl Data Sheets. 2014;120:211–4.

    Article  Google Scholar 

  32. Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, et al. Recent developments in geant4. Nucl Instrum Methods Phys Res Sect A. 2016;835:186–225.

    Article  CAS  Google Scholar 

  33. Salvat F, Fernández-Varea JM, Sempau J, et al. Penelope-2008: A code system for Monte Carlo simulation of electron and photon transport. In: Workshop Proceedings, Barcelona. Spain. 2008;30.

  34. Chytracek R, Mccormick J, Pokorski W, Santin G. Geometry description markup language for physics simulation and analysis applications. IEEE Trans Nucl Sci. 2006;53:2892–6.

    Article  Google Scholar 

  35. Stroud I, Xirouchakis PC. STL and extensions. Adv Eng Softw. 2000;31:83–95.

    Article  Google Scholar 

  36. Group G. TEXT file geometry manual, 2009.

  37. Snir M, Gropp W, Otto S, Huss-Lederman S, Dongarra J, Walker D. MPI-the Complete Reference: the MPI core. 1998;1

  38. Ahn S, Apostolakis J, Asai M, Brandt D, Cooperman G, Cosmo G, Dotti A, Dong X, Yung Jun S, Nowak A. GEANT4-MT : bringing multi-threading into GEANT4 production. In: Caruge D, Calvin C, Diop CM, Malvagi F, J.-C. Trama J-C. editors. SNA + MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, (Les Ulis, France), EDP Sciences, 2014.

  39. Brun R, Rademakers F. ROOT—an object oriented data analysis framework. Nucl Instrum Methods Phys Res A. 1997;389:81–6.

    Article  CAS  Google Scholar 

  40. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med. 2009;50:477–84.

    Article  CAS  PubMed  Google Scholar 

  41. Dias AH, Hansen AK, Munk OL, Gormsen LC. Normal values for 18F-FDG uptake in organs and tissues measured by dynamic whole body multiparametric FDG PET in 126 patients. EJNMMI Res. 2022;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arce P, Bolst D, Bordage M-C, Brown JMC, Cirrone P, Cortés-Giraldo MA, Cutajar D, Cuttone G, Desorgher L, Dondero P, Dotti A, Faddegon B, Fedon C, Guatelli S, Incerti S, Ivanchenko V, Konstantinov D, Kyriakou I, Latyshev G, Le A, Mancini-Terracciano C, Maire M, Mantero A, Novak M, Omachi C, Pandola L, Perales A, Perrot Y, Petringa G, Quesada JM, Ramos-Méndez J, Romano F, Rosenfeld AB, Sarmiento LG, Sakata D, Sasaki T, Sechopoulos I, Simpson EC, Toshito T, Wright DH. Report on G4-Med, a geant4 benchmarking system for medical physics applications developed by the geant4 medical simulation benchmarking group. Med Phys. 2021;48:19–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik El Ghalbzouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This study did not involve human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 706 KB)

Supplementary file2 (CSV 275 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ghalbzouri, T., El Bardouni, T., El Bakkali, J. et al. Validation of the DoseCalcs Monte Carlo code for estimating the 18F S-values for ICRP adult and 15-year-old male and female phantoms. Radiol Phys Technol 16, 212–226 (2023). https://doi.org/10.1007/s12194-023-00709-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-023-00709-2

Keywords

Navigation