Skip to main content
Log in

Simple quality assurance based on filtered back projection for geometrical/irradiation accuracy in single-isocenter multiple-target stereotactic radiotherapy

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

In single-isocenter multiple-target stereotactic radiotherapy (SIMT-SRT), it is difficult to evaluate both the geometrical accuracy and absorbed dose measurement when irradiating off-isocenter targets. This study aimed to develop a simple quality assurance (QA) method to evaluate off-isocenter irradiation position accuracy in SIMT-SRT and compare its feasibility with that of a commercial device. First, we created two types of inserts and metallic balls with a diameter of 5 mm to be inserted into a commercially available phantom (SIMT phantom). Second, we developed a dedicated analysis software using Python for the Winston–Lutz test (WLT). Third, an image processing software, including the filtered back-projection algorithm, was developed to analyze the images obtained using an electronic portal imaging device (EPID). Fourth, the feasibility of our method was evaluated by comparing it with the results of WLT using two commercially available phantoms: WL-QA and MultiMet-WL cubes. Notably, 92% of the results in one-dimensional deviations were within 0.26 mm (EPID pixel width). The correlation coefficients were 0.52, 0.92, and 0.96 in the left–right, superior-inferior, and anterior–posterior directions, respectively. In the WLT, a maximum two-dimensional deviation of 0.70 mm was detected in our method, while the deviation in the other method was within 0.5 mm. The advantage of our method is that it can evaluate the geometrical accuracy at any gantry angle during dynamic rotation irradiation using a filtered back-projection algorithm, even if the target is located off the isocenter. Our method can perform WLT at arbitrary positions and is suitable for the QA of dynamic rotation irradiation using an EPID.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data in this study are stored in our laboratory and will be available from the corresponding author upon reasonable request.

References

  1. Yuan Y, Thomas EM, Clark GA, Markert JM, Fiveash JB, Popple RA. Evaluation of multiple factors affecting normal brain dose in single-isocenter multiple target radiosurgery. J Radiosurg SBRT. 2018;5:131–44.

    PubMed  PubMed Central  Google Scholar 

  2. Li T, Irmen P, Liu H, et al. Dosimetric performance and planning/delivery efficiency of a dual-layer stacked and staggered MLC on treating multiple small targets: a planning study based on single-isocenter multi-target stereotactic radiosurgery (SRS) to brain metastases. Front Oncol. 2019;9:7. https://doi.org/10.3389/fonc.2019.00007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang J, Wernicke AG, Pannullo SC. Restricted single isocenter for multiple targets dynamic conformal arc (RSIMT DCA) technique for brain stereotactic radiosurgery (SRS) planning. J Radiosurg SBRT. 2018;5:145–56.

    PubMed  PubMed Central  Google Scholar 

  4. Cui Y, Gao H, Zhang J, Kirkpatrick JP, Yin FF. Retrospective quality metrics review of stereotactic radiosurgery plans treating multiple targets using single-isocenter volumetric modulated arc therapy. J Appl Clin Med Phys. 2020;21:93–9. https://doi.org/10.1002/acm2.12869.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Selvan KT, Padma G, Revathy MK, Nambi Raj NA, Senthilnathan K, Ramesh BP. Dosimetric effect of rotational setup errors in single-isocenter volumetric-modulated arc therapy of multiple brain metastases. J Med Phys. 2019;44:84–90. https://doi.org/10.4103/jmp.JMP_103_18.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang S, Yang R, Wang X. Dosimetric quality and delivery efficiency of robotic radiosurgery for brain metastases: comparison with C-arm linear accelerator based plans. J Appl Clin Med Phys. 2019;20:104–10. https://doi.org/10.1002/acm2.12746.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hughes RT, Masters AH, McTyre ER, et al. Initial SRS for patients with 5 to 15 brain metastases: results of a multi-institutional experience. Int J Radiat Oncol Biol Phys. 2019;104:1091–8. https://doi.org/10.1016/j.ijrobp.2019.03.052.

    Article  PubMed  Google Scholar 

  8. Sagawa T, Ohira S, Ueda Y, et al. Dosimetric effect of rotational setup errors in stereotactic radiosurgery with HyperArc for single and multiple brain metastases. J Appl Clin Med Phys. 2019;20:84–91. https://doi.org/10.1002/acm2.12716.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kirkpatrick JP, Wang Z, Sampson JH, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91:100–8. https://doi.org/10.1016/j.ijrobp.2014.09.004.

    Article  PubMed  Google Scholar 

  10. Klein EE, Hanley J, Bayouth J, et al. Task group 142 report: quality assurance of medical accelerators. Med Phys. 2009;36:4197–212. https://doi.org/10.1118/1.3190392.

    Article  PubMed  Google Scholar 

  11. Graulieres E, Kubler S, Martin E, Ferrand R. Positioning accuracy of a single-isocenter multiple targets SRS treatment: a comparison between Varian TrueBeam CBCT and Brainlab ExacTrac. Phys Med. 2020;80:267–73. https://doi.org/10.1016/j.ejmp.2020.10.022.

    Article  PubMed  Google Scholar 

  12. Ono K, Fujino K, Kurihara R, Hayashi SI, Akagi Y, Hirokawa Y. Three-dimensional Winston-Lutz test using reusable polyvinyl alcohol-iodide (PVA-I) radiochromic gel dosimeter. Phys Med Biol. 2021;66: 205001. https://doi.org/10.1088/1361-6560/ac279d.

    Article  CAS  Google Scholar 

  13. Capaldi DPI, Skinner LB, Dubrowski P, Yu AS. An integrated quality assurance phantom for frameless single-isocenter multitarget stereotactic radiosurgery. Phys Med Biol. 2020;65: 115006. https://doi.org/10.1088/1361-6560/ab8534.

    Article  CAS  PubMed  Google Scholar 

  14. Calvo-Ortega JF, Moragues-Femenía S, Laosa-Bello C, San José-Maderuelo S, Casals-Farran J. A closer look at the conventional Winston-Lutz test: analysis in terms of dose. Rep Pract Oncol Radiother. 2019;24:421–7. https://doi.org/10.1016/j.rpor.2019.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ye Y, Wang G. Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve. Med Phys. 2005;32:42–8. https://doi.org/10.1118/1.1828673.

    Article  PubMed  Google Scholar 

  16. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics. 2005;25:1409–28. https://doi.org/10.1148/rg.255055044.

    Article  PubMed  Google Scholar 

  17. Hao Y, Schmidt MC, Wu Y, Knutson NC. Portal dosimetry scripting application programming interface (PDSAPI) for Winston-Lutz test employing ceramic balls. J Appl Clin Med Phys. 2020;21:295–303. https://doi.org/10.1002/acm2.13043.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pavoni JF, Neves-Junior WFP, Da Silveira MA, Haddad CMK, Baffa O. Evaluation of a composite Gel-Alanine phantom on an end-to-end test to treat multiple brain metastases by a single isocenter VMAT technique. Med Phys. 2017;44:4869–79. https://doi.org/10.1002/mp.12400.

    Article  CAS  PubMed  Google Scholar 

  19. Slagowski JM, Wen Z. Selection of single-isocenter for multiple-target stereotactic brain radiosurgery to minimize total margin volume. Phys Med Biol. 2020;65: 185012. https://doi.org/10.1088/1361-6560/ab9703.

    Article  PubMed  Google Scholar 

  20. El Shafie RA, Tonndorf-Martini E, Schmitt D, et al. Single-isocenter volumetric modulated arc therapy vs. CyberKnife M6 for the stereotactic radiosurgery of multiple brain metastases. Front Oncol. 2020;10:568. https://doi.org/10.3389/fonc.2020.00568

  21. McKenna JT. The development and testing of a novel spherical radiotherapy phantom system for the commissioning and patient-specific quality assurance of mono-isocentric multiple mets SRS plans. Med Phys. 2021;48:105–13. https://doi.org/10.1002/mp.14565.

    Article  CAS  PubMed  Google Scholar 

  22. McCulloch J, Pawlowski J, Kirby N, et al. Patient-specific dose quality assurance of single-isocenter multiple brain metastasis stereotactic radiosurgery using PTW Octavius 4D. J Appl Clin Med Phys. 2020;21:107–15. https://doi.org/10.1002/acm2.12979.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kang H, Patel R, Roeske JC. Efficient quality assurance method with automated data acquisition of a single phantom setup to determine radiation and imaging isocenter congruence. J Appl Clin Med Phys. 2019;20:127–33. https://doi.org/10.1002/acm2.12723.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Casar B, Gershkevitsh E, Mendez I, Jurković S, Saiful HM. Output correction factors for small static fields in megavoltage photon beams for seven ionization chambers in two orientations—perpendicular and parallel. Med Phys. 2020;47:242–59. https://doi.org/10.1002/mp.13894.

    Article  CAS  PubMed  Google Scholar 

  25. Kadoya N, Kon Y, Takayama Y, et al. Quantifying the performance of two different types of commercial software programs for 3D patient dose reconstruction for prostate cancer patients: Machine log files vs. machine log files with EPID images. Phys Med. 2018;45:170–6. https://doi.org/10.1016/j.ejmp.2017.12.018

Download references

Funding

This study was partially supported by JSPS KAKENHI (Grant No. 19K08107 and 22K12852) for carrying out several experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Hayashi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to the content of this article to declare.

Ethics approval

This study did not involve human subjects and was not approved by the Institutional Review Board Committee.

Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, N., Kurata, S., Saito, Y. et al. Simple quality assurance based on filtered back projection for geometrical/irradiation accuracy in single-isocenter multiple-target stereotactic radiotherapy. Radiol Phys Technol 15, 409–416 (2022). https://doi.org/10.1007/s12194-022-00683-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00683-1

Keywords

Navigation