Skip to main content
Log in

Photon-specific absorbed fraction estimates in stylized ORNL and voxelized ICRP adult male phantoms using a new developed Geant4-based code “DoseCalcs”: a validation study

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

When a radiotracer is injected into a patient’s body as part of a nuclear medicine investigation, the entire body is exposed to the ionizing radiation emitted, which can cause biological damage. Therefore, it is important to predict the internal radiation dose to properly balance the advantages of radiological examinations. Currently, various Monte Carlo tools, such as MCNP, Geant4, and GATE, are available to estimate internal radiation dosimetry-related quantities, such as S values (S) and specific absorbed fractions (SAF). Such codes make physics easier for physicists who are experienced with computer programming; however, programming and/or simulation inputs remain a time-consuming and intensive task. In this study, we present a newly developed Geant4-based code for internal dosimetry calculations, namely “DoseCalcs”. To assess the performance of the geometrical methods and computational capabilities of our developed tool, we used the GDML, TEXT, STL, and C++ methods to model the ORNL adult phantom, and a voxel-based structure to construct the ICRP adult male. SAFs in the ORNL and ICRP adult male phantoms for eight discrete mono-energetic photons with energies ranging from 0.01 to 2 MeV are calculated with DoseCalcs and compared to ORNL and OpenDose reference data. The two phantoms showed good agreement with both references, which indicates the accuracy of DoseCalcs for subsequent use in estimating internal dosimetry quantities using a variety of geometrical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zaidi H. Recent developments and future trends in nuclear medicine instrumentation. Z Med Phys. 2006;16(1):5–17.

    Article  PubMed  Google Scholar 

  2. Huang B, Law MW-M, Khong P-L. Whole-body PET/CT scanning estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.

    Article  PubMed  Google Scholar 

  3. Glatting G, Lassmann M. Nuclear medicine dosimetry: quantitative imaging and dose calculations. Z Med Phys. 2011;21:246–7.

    Article  PubMed  Google Scholar 

  4. Endo M. History of medical physics. Radiol Phys Technol. 2021;14:345–57.

    Article  PubMed  Google Scholar 

  5. Dunn WL, Shultis JK. Exploring Monte Carlo methods. Amsterdam: Elsevier; 2011.

    Google Scholar 

  6. ...Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Mora Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, DiSalvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai–Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250–303.

    Article  CAS  Google Scholar 

  7. ...Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore PF, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira JM, Visvikis D, Van de Walle R, Wieërs E, Morel C. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pietrzyk U, Zakhnini A, Axer M, Sauerzapf S, Benoit D, Gaens M. EduGATE—basic examples for educative purpose using the GATE simulation platform. Z Med Phys. 2013;23:65–70.

    Article  PubMed  Google Scholar 

  9. Werner CJ, Bull JS, Solomon CJ, Brown FB, McKinney GW, Rising ME, Dixon DA, Martz RL, Hughes HG, Cox LJ, Zukaitis AJ, Armstrong JC, Forster RA, Casswell L. “MCNP version 6.2. release notes,” tech. rep., 2018.

  10. Bakkali JE, Doudouh A, Bardouni TE. InterDosi simulations of photon- and alpha-specific absorbed fractions in the Zubal voxelized phantom. Appl Radiat Isot. 2021;176: 109838.

    Article  PubMed  Google Scholar 

  11. Ocampo JC, Puerta JA, Morales J. Evaluation of specific absorbed fractions from the internal photon sources in the ICRP reference male phantom. Radiat Prot Dosim. 2013;157:133–41.

    Article  CAS  Google Scholar 

  12. Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE. Specific absorbed fractions for a revised series of UF/NCI pediatric reference phantoms: internal photon sources. Phys Med Biol. 2021;66: 035006.

    Article  PubMed  Google Scholar 

  13. Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE. Specific absorbed fractions for a revised series of the UF/NCI pediatric reference phantoms: internal photon sources. Phys Med Biol. 2021;66: 035006.

    Article  PubMed  Google Scholar 

  14. Chytracek R, Mccormick J, Pokorski W, Santin G. Geometry description markup language for physics simulation and analysis applications. IEEE Trans Nucl Sci. 2006;53:2892–6.

    Article  Google Scholar 

  15. Stroud I, Xirouchakis PC. STL and extensions. Adv Eng Softw. 2000;31:83–95.

    Article  Google Scholar 

  16. Constantin M, Constantin DE, Keall PJ, Narula A, Svatos M, Perl J. Linking computer-aided design (CAD) to geant4-based monte Carlo simulations for precise implementation of the complex treatment head geometries. Phys Med Biol. 2010;55:N211-20.

    Article  PubMed  Google Scholar 

  17. Poole CM, Cornelius I, Trapp JV, Langton CM. A CAD interface for GEANT4. Australas Phys Eng Sci Med. 2012;35:329–34.

    Article  CAS  PubMed  Google Scholar 

  18. Snir M, Gropp W, Otto S, Huss-Lederman S, Dongarra J, Walker D. MPI—complete reference: the MPI core, vol. 1. London: MIT Press; 1998.

    Google Scholar 

  19. Ahn S, Apostolakis J, Asai M, Brandt D, Cooperman G, Cosmo G, Dotti A, Dong X, Yung Jun S, Nowak A. GEANT4-MT : bringing multi-threading into GEANT4 production. In: D. Caruge, C. Calvin, C. M. Diop, F. Malvagi, and J.-C. Trama, (eds) SNA + MC 2013—Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, (Les Ulis, France), EDP Sciences, 2014.

  20. Brun R, Rademakers F. ROOT—anobject-oriented data analysis framework. Nucl Instrum Methods Phys Res A. 1997;389:81–6.

    Article  CAS  Google Scholar 

  21. Kim CH, Yeom YS, Petoussi-Henss N, Zankl M, Bolch WE, Lee C, Choi C, Nguyen TT, Eckerman K, Kim HS, Han MC, Qiu R, Chung BS, Han H, Shin B. ICRP publication 145: adult mesh type reference computational phantoms. Ann ICRP. 2020;49:13–201.

    Article  CAS  PubMed  Google Scholar 

  22. Guatelli S, Mascialino B, Pia MG, Pokorski W. Geant4 anthropomorphic phantoms. In: 2006 IEEE Nuclear Science Symposium Conference Record, IEEE. 2006.

  23. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources: 1 Methods. Tech. rep., Oak Ridge National Laboratory, TN (USA), 1987.

  24. Zankl M. Adult male and female reference computational phantoms (ICRP publication 110). Jpn J Health Phys. 2010;45(4):357–69.

    Article  Google Scholar 

  25. Chauvin M, Mathieu G, Camarasu-Pop S, Bonnet A, Bardies M, Perseil I. Enabling large scale data production for OpenDose with GATE on the EGI infrastructure. In: 2019 19th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (CCGRID), IEEE, May 2019.

  26. ...Arce P, Bolst D, Bordage MC, Brown JMC, Cirrone P, Cortés-Giraldo MA, Cutajar D, Cuttone G, Desorgher L, Dondero P, Dotti A, Faddegon B, Fedon C, Guatelli S, Incerti S, Ivanchenko V, Konstantinov D, Kyriakou I, Latyshev G, Le A, Mancini-Terracciano C, Maire M, Mantero A, Novak M, Omachi C, Pandola L, Perales A, Perrot Y, Petringa G, Quesada JM, Ramos-Méndez J, Romano F, Rosenfeld AB, Sarmiento LG, Sakata D, Sasaki T, Sechopoulos I, Simpson EC, Toshito T, Wright DH. Report on G4-Med, a geant4 benchmarking system for medical physics applications developed by geant4 medical simulation benchmarking group. Med Phys. 2021;48:19–56.

    Article  CAS  PubMed  Google Scholar 

  27. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources: 7, adult males. 1987.

  28. Chauvin M, Borys D, Botta F, Bzowski P, Dabin J, Denis-Bacelar AM, Desbrée A, Falzone N, Lee BQ, Mairani A, Malaroda A, Mathieu G, McKay E, Mora-Ramirez E, Robinson AP, Sarrut D, Struelens L, Gil AV, Bardiès M. OpenDose: open-access resource for nuclear medicine dosimetry. J Nucl Med. 2020;61:1514–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parach AA, Rajabi H, Askari MA. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Radiat Environ Biophys. 2011;50:441–50.

    Article  PubMed  Google Scholar 

  30. Snyder WS. Mird pamphlet no. 5: estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med. 1969;10:1.

    Google Scholar 

  31. ...Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield PM, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Chung YH, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore PF, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, van der Laan DJ, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira JM, Visvikis D, Van de Walle R, Wieërs E, Morel C. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik El Ghalbzouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This research does not involve human participants and animals.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 235 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalbzouri, T.E., Bardouni, T.E., Bakkali, J.E. et al. Photon-specific absorbed fraction estimates in stylized ORNL and voxelized ICRP adult male phantoms using a new developed Geant4-based code “DoseCalcs”: a validation study. Radiol Phys Technol 15, 323–339 (2022). https://doi.org/10.1007/s12194-022-00672-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00672-4

Keywords

Navigation