Skip to main content
Log in

RadiomicsJ: a library to compute radiomic features

  • Technical Note
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Despite the widely recognized need for radiomics research, the development and use of full-scale radiomics-based predictive models in clinical practice remains scarce. This is because of the lack of well-established methodologies for radiomic research and the need to develop systems to support radiomic feature calculations and predictive model use. Several excellent programs for calculating radiomic features have been developed. However, there are still issues such as the types of image features, variations in the calculated results, and the limited system environment in which to run the program. Against this background, we developed RadiomicsJ, an open-source radiomic feature computation library. RadiomicsJ will not only be a new research tool to enhance the efficiency of radiomics research but will also become a knowledge resource for medical imaging feature studies through its release as an open-source program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  Google Scholar 

  2. Lambin P, Leijenaar R, Deist T, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

    Article  Google Scholar 

  3. Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D’Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med. 2021;126(12):1571–83.

    Article  Google Scholar 

  4. Fan Z, Sun Z, Fang S, Li Y, Liu X, Liang Y, Liu Y, Zhou C, Zhu Q, Zhang H, Li T, Li S, Jiang T, Wang Y, Wang L. Preoperative radiomics analysis of 1p/19q status in WHO Grade II gliomas. Front Oncol. 2021;11: 616740.

    Article  Google Scholar 

  5. Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol. 2021;28:97–115.

    Article  CAS  Google Scholar 

  6. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.

    Article  Google Scholar 

  7. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Can Res. 2017;77(21):E104–7.

    Article  Google Scholar 

  8. Pfaehler E, Zwanenburg A, de Jong JR, Boellaard R. RaCaT: an open source and easy to use radiomics calculator tool. PLoS ONE. 2019;14(2): e0212223.

    Article  CAS  Google Scholar 

  9. Wolf I, et al. The medical imaging interaction toolkit. Med Image Anal. 2005;9:594–604.

    Article  Google Scholar 

  10. Nolden M, Zelzer S, Seitel A, et al. The Medical Imaging Interaction Toolkit: challenges and advances. Int J CARS. 2013;8:607–20.

    Article  Google Scholar 

  11. Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz FA, editor. Intraoperative imaging and image-guided therapy. New York: Springer; 2014. p. 277–89.

    Chapter  Google Scholar 

  12. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  Google Scholar 

  13. Schmid B, Schindelin J, Cardona A, et al. A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics. 2010;11:274.

    Article  Google Scholar 

  14. Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–38.

    Article  Google Scholar 

  15. Zwanenburg A, Leger S, Vallières M, Löck S, et al. Image biomarker standardisation initiative reference manual, arXiv:1612.07003v11 [cs.CV] 17 Dec 2019.

  16. Witten IH, Frank E, Hall MA, Pal C, Mining D. Practical machine learning tools and techniques (Morgan Kaufmann Series in Data Management Systems). 4th ed. Massachusetts: Morgan Kaufmann; 2016.

    Google Scholar 

  17. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14(Aug):2349–53.

    Google Scholar 

  18. Raf E. JSAT: Java statistical analysis tool, a library for machine learning. J Mach Learn Res. 2017;18(23):1–5.

    Google Scholar 

  19. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2012;12:2825–30.

    Google Scholar 

  20. Akkus Z, Ali I, Sedlář J, Agrawal JP, Parney IF, Giannini C, Erickson BJ. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30(4):469–76.

    Article  Google Scholar 

  21. Erickson B, Akkus Z, Sedlar J, Korfiatis P. Data from LGG-1p19q deletion. Cancer Imaging Arch. 2017. https://doi.org/10.7937/K9/TCIA.2017.dwehtz9v.

    Article  Google Scholar 

  22. Lao J, Chen Y, Li ZC, Li Q, Zhang J, Liu J, Zhai G. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(1):10353. https://doi.org/10.1038/s41598-017-10649-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi K, Miyake M, Takahashi M, et al. Observing deep radiomics for the classification of glioma grades. Sci Rep. 2021;11:10942.

    Article  CAS  Google Scholar 

  24. Ninomiya K, Arimura H. Homological radiomics analysis for prognostic prediction in lung cancer patients. Phys Med. 2020;69:90–100.

    Article  Google Scholar 

  25. Nebbia, G. et al. Radiomics-informed deep curriculum learning for breast cancer diagnosis. In Medical image computing and computer assisted intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, 2021; p. 12905.

  26. Beare R, Lowekamp B, Yaniv Z. Image segmentation, registration and characterization in R with SimpleITK. J Stat Softw. 2018;86:8.

    Article  Google Scholar 

  27. Yaniv Z, Lowekamp BC, Johnson HJ, Beare R. SimpleITK image-analysis notebooks: a collaborative environment for education and reproducible research. J Digit Imaging. 2018;31(3):290–303.

    Article  Google Scholar 

  28. Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:45.

    Article  Google Scholar 

  29. Fan Z, Sun Z, Fang S, Li Y, Liu X, Liang Y, Liu Y, Zhou C, Zhu Q, Zhang H, Li T, Li S, Jiang T, Wang Y, Wang L. Preoperative radiomics analysis of 1p/19q Status in WHO Grade II gliomas. Front Oncol. 2021;6(11): 616740.

    Article  Google Scholar 

  30. Casale R, Lavrova E, Sanduleanu S, Woodruff HC, Lambin P. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients. Eur J Radiol. 2021;139: 109678.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuaki Kobayashi.

Ethics declarations

Conflict of interest

Tatsuaki Kobayashi received a development environment from Visionary Imaging Services, Inc. and owns stock in Visionary Imaging Services, Inc.

Ethical approval

This article does not include any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 173 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T. RadiomicsJ: a library to compute radiomic features. Radiol Phys Technol 15, 255–263 (2022). https://doi.org/10.1007/s12194-022-00664-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00664-4

Keywords

Navigation