Skip to main content

Advertisement

Log in

The impact of target positioning error and tumor size on radiobiological parameters in robotic stereotactic radiosurgery for metastatic brain tumors

  • Research Article
  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the effect of target positioning error (TPE) on radiobiological parameters, such as tumor control probability (TCP) and normal tissue complication probability (NTCP), in stereotactic radiosurgery (SRS) for metastatic brain tumors of different sizes using CyberKnife. The reference SRS plans were created using the circular cone of the CyberKnife for each spherical gross tumor volume (GTV) with diameters (φ) of 5, 7.5, 10, 15, and 20 mm, contoured on computed tomography images of the head phantom. Subsequently, plans involving TPE were created by shifting the beam center by 0.1–2.0 mm in three dimensions relative to the reference plans using the same beam arrangements. Conformity index (CI), generalized equivalent uniform dose (gEUD)-based TCP, and NTCP of estimated brain necrosis were evaluated for each plan. When the gEUD parameter “a” was set to − 10, the CI and TCP for the reference plan at the φ5-mm GTV were 0.90 and 80.8%, respectively. The corresponding values for plans involving TPE of 0.5-mm, 1.0-mm, and 2.0-mm were 0.62 and 77.4%, 0.40 and 62.9%, and 0.12 and 7.2%, respectively. In contrast, the NTCP for all GTVs were the same. The TCP for the plans involving a TPE of 2-mm was 7.2% and 68.8% at the φ5-mm and φ20-mm GTV, respectively. The TPEs corresponding to a TCP reduction rate of 3% at the φ5-mm and φ20-mm GTV were 0.41 and 0.99 mm, respectively. TPE had a significant effect on TCP in SRS for metastatic brain tumors using CyberKnife, particularly for small GTVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wiggenraad R, Verbeek-de Kanter A, Kal HB, Taphoorn M, Vissers T, Struikmans H. Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol. 2011;98(3):292–7.

    Article  PubMed  Google Scholar 

  2. Aoyama H, Shirato H, Tago M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.

    Article  CAS  PubMed  Google Scholar 

  3. Shaw E, Scott C, Souhami L, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  4. Xu Q, Fan J, Grimm J, et al. The dosimetric impact of the prescription isodose line (IDL) on the quality of robotic stereotactic radiosurgery (SRS) plans. Med Phys. 2017;44(12):6159–65.

    Article  CAS  PubMed  Google Scholar 

  5. Treatment Centers. Accuray, Sunnyvale. https://www.accuray.com/treatment-centers/. Accessed 17 Dec 2021.

  6. Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR. The CyberKnife® robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010;9(5):433–52.

    Article  CAS  PubMed  Google Scholar 

  7. Floriano A, Santa-Olalla I, Sanchez-Reyes A. Experience with the CyberKnife for intracranial stereotactic radiosurgery: analysis of dosimetry indices. Med Dosim. 2014;39(1):1–6.

    Article  PubMed  Google Scholar 

  8. Sio TT, Jang S, Lee SW, Curran B, Pyakuryal AP, Sternick ES. Comparing gamma knife and cyberknife in patients with brain metastases. J Appl Clin Med Phys. 2014;15(1):4095.

    Article  PubMed  Google Scholar 

  9. Han EY, Wang H, Luo D, Li J, Wang X. Dosimetric comparison of fractionated radiosurgery plans using frameless Gamma Knife ICON and CyberKnife systems with linear accelerator-based radiosurgery plans for multiple large brain metastases. J Neurosurg. 2019;132(5):1473–9.

    Article  PubMed  Google Scholar 

  10. Zhang S, Yang R, Wang X. Dosimetric quality and delivery efficiency of robotic radiosurgery for brain metastases: comparison with C-arm linear accelerator based plans. J Appl Clin Med Phys. 2019;20(11):104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zindler JD, Schiffelers J, Lambin P, Hoffmann AL. Improved effectiveness of stereotactic radiosurgery in large brain metastases by individualized isotoxic dose prescription: an in silico study. Strahlenther Onkol. 2018;194(6):560–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Cooper BT, Schiff P, et al. Dosimetric assessment of tumor control probability in intensity and volumetric modulated radiotherapy plans. Br J Radiol. 2019;92(1094):20180471.

    Article  PubMed  Google Scholar 

  13. Milano MT, Grimm J, Niemierko A, et al. Single- and multifraction stereotactic radiosurgery dose/volume tolerances of the brain. Int J Radiat Oncol Biol Phys. 2020;3016(20):34101–8 (in press).

    Google Scholar 

  14. ICRU (International Commission on Radiation Units & Measurements). ICRU. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. 2014.

  15. Halvorsen PH, Cirino E, Das IJ, et al. AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys. 2017;18(5):10–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dieterich S, Cavedon C, Chuang CF, et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.

    Article  PubMed  Google Scholar 

  17. Guckenberger M, Roesch J, Baier K, Sweeney RA, Flentje M. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol. 2012;7:63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Winey B, Bussiere M. Geometric and dosimetric uncertainties in intracranial stereotatctic treatments for multiple nonisocentric lesions. J Appl Clin Med Phys. 2014;15(3):122–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nakano H, Tanabe S, Utsunomiya S, et al. Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys. 2020;21(12):155–65.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kraft J, van Timmeren JE, Mayinger M, et al. Distance to isocenter is not associated with an increased risk for local failure in LINAC-based single-isocenter SRS or SRT for multiple brain metastases. Radiother Oncol. 2021;159:168–75.

    Article  PubMed  Google Scholar 

  21. Nakano H, Tanabe S, Sasamoto R, et al. Radiobiological evaluation considering setup error on single-isocenter irradiation in stereotactic radiosurgery. J Appl Clin Med Phys. 2021;22(7):266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jhaveri J, Chowdhary M, Zhang X, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurol Surg. 2018;130(3):797–803.

    Google Scholar 

  23. Eaton DJ, Lee J, Paddick I. Stereotactic radiosurgery for multiple brain metastases: results of multicenter benchmark planning studies. Pract Radiat Oncol. 2018;8(4):e212–20.

    Article  PubMed  Google Scholar 

  24. Schlaefer A, Schweikard A. Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys. 2008;35(5):2094–103.

    Article  CAS  PubMed  Google Scholar 

  25. Chang EL, Selek U, Hassenbusch SJ III, et al. Outcome variation among “radioresistant” brain metastases treated with stereotactic radiosurgery. Neurosurgery. 2005;56(5):936–45 (discussion 936).

    PubMed  Google Scholar 

  26. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurol Surg. 2006;105(suppl):194–201.

    Google Scholar 

  27. Niemierko A. A generalized concept of equivalent uniform dose (EUD). Med Phys. 1999;26:1100.

    Google Scholar 

  28. Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys. 2002;52(1):224–35.

    Article  PubMed  Google Scholar 

  29. Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007;23(3–4):115–25.

    Article  PubMed  Google Scholar 

  30. Chapet O, Thomas E, Kessler ML, Fraass BA, Ten Haken RK. Esophagus sparing with IMRT in lung tumor irradiation: an EUD-based optimization technique. Int J Radiat Oncol Biol Phys. 2005;63(1):179–87.

    Article  PubMed  Google Scholar 

  31. Chaikh A, Balosso J. The use of TCP based EUD to rank and compare lung radiotherapy plans: in-silico study to evaluate the correlation between TCP with physical quality indices. Transl Lung Cancer Res. 2017;6(3):366–72.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chaikh A, Docquière N, Bondiau PY, Balosso J. Impact of dose calculation models on radiotherapy outcomes and quality adjusted life years for lung cancer treatment: do we need to measure radiotherapy outcomes to tune the radiobiological parameters of a normal tissue complication probability model? Transl Lung Cancer Res. 2016;5(6):673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao L, Chen M, Ten Haken R, et al. Three-dimensional conformal radiation may deliver considerable dose of incidental nodal irradiation in patients with early stage node-negative non-small cell lung cancer when the tumor is large and centrally located. Radiother Oncol. 2007;82(2):153–9.

    Article  PubMed  Google Scholar 

  34. Thieke C, Bortfeld T, Niemierko A, Nill S. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning. Med Phys. 2003;30(9):2332–9.

    Article  PubMed  Google Scholar 

  35. Horton JK, Halle JS, Chang SX, Sartor CI. Comparison of three concomitant boost techniques for early-stage breast cancer. Int J Radiat Oncol Biol Phys. 2006;64(1):168–75.

    Article  PubMed  Google Scholar 

  36. Redmond KJ, Gui C, Benedict S, et al. Tumor control probability of radiosurgery and fractionated stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 2021;110(1):53–67.

    Article  PubMed  Google Scholar 

  37. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8(11):1981–97.

    Article  CAS  PubMed  Google Scholar 

  38. Thames HD Jr, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982;8(2):219–26.

    Article  PubMed  Google Scholar 

  39. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18(4):234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Joiner M. Quantifying cell kill and survival. In: Joiner M, van der Kogel A, editors. Basic clinical radiobiology. London: Hodder Arnold; 2009.

    Chapter  Google Scholar 

  41. Yuan J, Wang JZ, Lo S, et al. Hypofractionation regimens for stereotactic radiotherapy for large brain tumors. Int J Radiat Oncol Biol Phys. 2008;72(2):390–7.

    Article  PubMed  Google Scholar 

  42. International Atomic Energy Agency (IAEA). Accuracy Requirements and Uncertainties in Radiotherapy. Human Health Series No. 31. Vienna: International Atomic Energy Agency; 2016.

  43. Allen Li X, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med Phys. 2012;39(3):1386–409.

    Article  CAS  PubMed  Google Scholar 

  44. Pantelis E, Moutsatsos A, Antypas C, et al. On the total system error of a robotic radiosurgery system: phantom measurements, clinical evaluation and long-term analysis. Phys Med Biol. 2018;63(16): 165015.

    Article  CAS  PubMed  Google Scholar 

  45. Muacevic A, Kufeld M, Wowra B, Kreth FW, Tonn JC. Feasibility, safety, and outcome of frameless image-guided robotic radiosurgery for brain metastases. J Neurooncol. 2010;97(2):267–74.

    Article  PubMed  Google Scholar 

  46. Dupic G, Brun L, Molnar I, et al. Significant correlation between gross tumor volume (GTV) D98% and local control in multifraction stereotactic radiotherapy (MF-SRT) for unresected brain metastases. Radiother Oncol. 2021;154:260–8.

    Article  CAS  PubMed  Google Scholar 

  47. Dimitriadis A, Kirkby KJ, Nisbet A, Clark CH. Current status of cranial stereotactic radiosurgery in the UK. Br J Radiol. 2016;89(1058):20150452.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Grants-in-Aid for Scientific Research–KAKENHI (Grant Nos. 19K17227, 20K16819, and 21K07722) from the Japanese Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Takizawa.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study did not involve any experiments using human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takizawa, T., Tanabe, S., Nakano, H. et al. The impact of target positioning error and tumor size on radiobiological parameters in robotic stereotactic radiosurgery for metastatic brain tumors. Radiol Phys Technol 15, 135–146 (2022). https://doi.org/10.1007/s12194-022-00655-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-022-00655-5

Keywords

Navigation