Skip to main content
Log in

Delineation of the intratemporal facial nerve in a cadaveric specimen on diffusion tensor imaging using a 9.4 T magnetic resonance imaging scanner: a technical note

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether the intratemporal facial nerve could be delineated on 9.4 T magnetic resonance imaging (MRI) using T2-weighted and diffusion tensor imaging (DTI). DTI using a b value of 3000 and an isotropic resolution of 0.4 mm3 on a 9.4 T MRI scanner was performed on a whole-block celloidin-embedded cadaveric temporal bone specimen of a 1-year-old infant with normal temporal bones. The labyrinthine, tympanic, and mastoid segments of the facial nerve and the chorda tympani nerve were readily depicted on DTI. Therefore, DTI performed using a high b value on a high-field strength MRI scanner could help evaluate the intratemporal facial nerve in whole temporal bone ex vivo specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DTI:

Diffusion tensor imaging

MRI:

Magnetic resonance imaging

CT:

Computed tomography

TR:

Repetition time

TE:

Echo time

References

  1. Lane JI, Witte RJ, Driscoll CL, Camp JJ, Robb RA. Imaging microscopy of the middle and inner ear: part I: CT microscopy. Clin Anat. 2004;17:607–12.

    Article  PubMed  Google Scholar 

  2. Lane JI, Witte RJ, Henson OW, Driscoll CL, Camp J, Robb RA. Imaging microscopy of the middle and inner ear: part II: MR microscopy. Clin Anat. 2005;18:409–15.

    Article  PubMed  Google Scholar 

  3. Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK. Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 Tesla. Otol Neurotol. 2017;38:133–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kozerska M, Skrzat J. Anatomy of the fundus of the internal acoustic meatus—micro-computed tomography study. Folia Morphol (Warsz). 2015;74:352–8.

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Shi D, Li H, Tan S, Liu Y, Qi C, Tang A. Micro-CT study of the human cochlear aqueduct. Surg Radiol Anat. 2018;40:713–20.

    Article  PubMed  Google Scholar 

  6. Taoka T, Hirabayashi H, Nakagawa H, Sakamoto M, Myochin K, Hirohashi S, Iwasaki S, Sakaki T, Kichikawa K. Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging. 2006;24:1005–10.

    Article  PubMed  Google Scholar 

  7. Hilly O, Chen JM, Birch J, Hwang E, Lin VY, Aviv RI, Symons SP. Diffusion tensor imaging tractography of the facial nerve in patients with cerebellopontine angle tumors. Otol Neurotol. 2016;37:388–93.

    PubMed  Google Scholar 

  8. Zhang Y, Mao Z, Wei P, Jin Y, Ma L, Zhang J, Yu X. Preoperative prediction of location and shape of facial nerve in patients with large vestibular schwannomas using diffusion tensor imaging-based fiber tracking. World Neurosurg. 2017;99:70–8.

    Article  PubMed  Google Scholar 

  9. Ung N, Mathur M, Chung LK, Cremer N, Pelargos P, Frew A, Thill K, Mathur I, Voth B, Lim M, Yang I. A systematic analysis of the reliability of diffusion tensor imaging tractography for facial nerve imaging in patients with vestibular schwannoma. J Neurol Surg B Skull Base. 2016;77:314–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Savardekar AR, Patra DP, Thakur JD, Narayan V, Mohammed N, Bollam P, Nanda A. Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates. Neurosurg Focus. 2018;44:E5.

    Article  PubMed  Google Scholar 

  11. Măru N, Cheiţă AC, Mogoantă CA, Prejoianu B. Intratemporal course of the facial nerve: morphological, topographic and morphometric features. Rom J Morphol Embryol. 2010;51:243–8.

    PubMed  Google Scholar 

  12. Nelson EG, Hinojosa R. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope. 2006;116:1–12.

    Article  PubMed  Google Scholar 

  13. Guenette JP, Seethamraju RT, Jayender J, Corrales CE, Lee TC. MR imaging of the facial nerve through the temporal bone at 3T with a noncontrast ultrashort echo time sequence. AJNR Am J Neuroradiol. 2018;39:1903–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerganov VM, Giordano M, Samii M, Samii A. Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg. 2011;115:1087–93.

    Article  PubMed  Google Scholar 

  15. van Egmond SL, Visser F, Pameijer FA, Grolman W. Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol. 2014;35:725–9.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Center for Advancing Translational Sciences of the National Institutes of Health through Grant Number UL1 TR000430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Thomas Ginat.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest or disclosures.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginat, D.T., Collins, J., Christov, F. et al. Delineation of the intratemporal facial nerve in a cadaveric specimen on diffusion tensor imaging using a 9.4 T magnetic resonance imaging scanner: a technical note. Radiol Phys Technol 12, 357–361 (2019). https://doi.org/10.1007/s12194-019-00528-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-019-00528-4

Keywords

Navigation