Skip to main content
Log in

Patient-specific quality assurance for proton depth dose distribution using a multi-layer ionization chamber in a single-ring wobbling method

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The use of a multi-layer ionization chamber, Zebra, in patient-specific quality assurance (QA) for proton depth dose distributions in a single-ring wobbling method is investigated. The depth dose distributions measured using Zebra are compared with those calculated using the treatment planning system (TPS), XiO-M, and measured using an ionization chamber with a motorized water phantom system. Because the TPS only provides point doses, the average doses are calculated using in-house software. The detector size-corrected depth dose distributions are obtained by determining the average of the dose distributions from the TPS over a cylindrical region similar to the size of the Zebra detectors. The calculated depth dose distributions from the cases with a simple compensator shape are in good agreement with those obtained from the TPS without performing volume averaging; however, a 15% difference was shown when compared with those from the cases with a complex compensator shape. Then, the measurements are compared with the detector size-corrected depth dose distributions, showing an improved agreement within 3% for the highly steep dose gradient regions. Although there are some field size limitations, the Zebra system is a useful device for the fast measurement of patient-specific QA for depth dose distributions in wobbled proton beams. However, careful consideration is required for complex dose distribution fields, because the measurements obtained using Zebra cannot be directly compared to the depth dose distributions from the TPS owing to the finite detector size of the Zebra chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA. Absorbed dose Determination in External Beam Radiotherapy-An international Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water Technical Report Series No 398. Vienne: International Atomic Energy Agency; 2000.

    Google Scholar 

  2. Nichiporov D, Solberg K, Hsi W, His W, Wolanski M, Mascia A, Farr J, Schreuder A. Multichannel detectors for profile measurements in clinical proton fields. Med Phys. 2007;34:2683–90.

    Article  PubMed  Google Scholar 

  3. Yajima K, Kanai T, Kusano Y, Shimojyu T. Development of a multi-layer ionization chamber for heavy-ion radiotherapy. Phys Med Biol. 2009;54:N107–14.

    Article  CAS  PubMed  Google Scholar 

  4. Dhanesar S, Sahoo N, Kerr M, Taylor B, Summers P, Zhu XR, Poenisch F, Gillin M. Quality assurance of proton beams using a multilayer ionization chamber system. Med Phys. 2013;40:092102.

    Article  PubMed  Google Scholar 

  5. Rinaldi I, Brons S, Jäkel O, Voss B, Parodi K. A method to increase the nominal range resolution of a stack of parallel-plate ionization chambers. Phys Med Biol. 2014;59:5501–15.

    Article  CAS  PubMed  Google Scholar 

  6. Takayanagi T, Nihongi H, Nishiuchi H, Tadokoro M, Ito Y, Nakashima C, Fujitaka S, Umezawa M, Matsuda K, Sakae T, Terunuma T. Dual ring multilayer ionization chamber and theory-based correction technique for scanning proton therapy. Med Phys. 2016;43:4150–62.

    Article  CAS  PubMed  Google Scholar 

  7. Mirandola A, Magro G, Lavagno M, Mairani A, Molinelli S, Russo S, Mastella E, Vai A, Maestri D, Rossa V, Ciocca M. Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread-out-Bragg-peaks in light ion beam therapy. Med Phys. 2018;45:2266–77.

    Article  CAS  PubMed  Google Scholar 

  8. Schippers JM, Lomax AJ. Emerging technologies in proton therapy. Acta Oncol. 2011;50:838–50.

    Article  PubMed  Google Scholar 

  9. Koehler AM, Schneider RJ, Sisterson JM. Flattening of proton dose distributions for large-field radiotherapy. Med Phys. 1977;4:297–301.

    Article  CAS  PubMed  Google Scholar 

  10. Himukai T, Takada Y, Hotta K, Hara Y, Komori M, Kanai T, Kohno R. Analytical design method of optimum ridge filters for wobbled and collimated proton beams. Jpn J Med Phys. 2008;28:57–69.

    Google Scholar 

  11. Kase Y, Yamashita H, Numano M, Sakama M, Mizota M, Maeda Y, Tameshige Y, Murayama S. A model-based analysis of a simplified beam-specific dose output in proton therapy with a single-ring wobbling system. Phys Med Biol. 2015;60:359–74.

    Article  PubMed  Google Scholar 

  12. Tansho R, Takada Y, Kohno R, Hotta K, Hara Y, Mizutani S, Akimoto T. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system. Phys Med Biol. 2013;58:6047–64.

    Article  PubMed  Google Scholar 

  13. Yonai S, Kanematsu N, Komori M, Kanai T, Takei Y, Takahashi O, Isobe Y, Tashiro M, Koikegami H, Tomita H. Evaluation of beam wobbling methods for heavy-ion radiotherapy. Med Phys. 2008;35:927–38.

    Article  PubMed  Google Scholar 

  14. Lomax AJ, Böhringer T, Bolsi A, Coray D, Emert F, Goitein G, Jermann M, Lin S, Pedroni E, Rutz H, Stadelmann O, Timmermann B, Verwey J, Weber DC. Treatment planning and verification of proton therapy using spot scanning: initial experiences. Med Phys. 2004;31:3150–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and animals performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Arai, K., Sagara, T. et al. Patient-specific quality assurance for proton depth dose distribution using a multi-layer ionization chamber in a single-ring wobbling method. Radiol Phys Technol 12, 305–311 (2019). https://doi.org/10.1007/s12194-019-00524-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-019-00524-8

Keywords

Navigation