Skip to main content
Log in

Investigation of anisotropic fishing line-based phantom as tool in quality control of diffusion tensor imaging

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript


This work proposes a low-cost, fishing line-based phantom for quality control of diffusion tensor imaging (DTI). The device was applied to investigate the relationship between DTI indexes (DTIi) and imaging acquisition parameters. A Dyneema® fishing line phantom was built with fiber bundles of different thicknesses. DTI acquisitions were performed in a 3T magnetic resonance imaging scanner using an 8-channel and a 32-channel head coil. For each coil, the following acquisition parameters were changed, one at a time: diffusion sensitivity factor (b value), echo time, sensitivity encoding, voxel size, number of signal averages, and number of diffusion gradient directions (NDGD). DTIi including fractional anisotropy, relative anisotropy (RA), linear anisotropy (CL), and planar anisotropy (CP) were calculated for each image; the data were analyzed using the coefficient of variation (CV) and distributions of DTIi values. The 32-channel head coil presented higher CV values for the DTIi RA, CL, and CP when voxel size was changed. Using the phantom, dependences between diffusion-related parameters (b value and NDGD) and DTIi were also observed; the majority of these were for the smaller thickness fiber bundles. The device proved to be useful for the verification of the DTI performance over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshida S, Oishi K, Faria AV, Mori S. Diffusion tensor imaging of normal brain development. Pediatr Radiol. 2013;43(1):15–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sternberg EJ, Lipton ML, Burns J. Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR. 2014;35(3):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24(3):478–88.

    Article  PubMed  Google Scholar 

  5. Hellerbach A, Schuster V, Jansen A, Sommer J. MRI phantoms—are there alternatives to agar? PLoS One. 2013;8(8):e70343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, Navia B, Mori S, Ekholm S, Schifitto G, Zhong J. Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. Neuroimage. 2011;56(3):1398–411.

    Article  PubMed  Google Scholar 

  7. Kim SJ, Choi CG, Kim JK, Yun SC, Jahng GH, Jeong HK, Kim EJ. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: evaluation using a diffusional anisotropic phantom. Korean J Radiol. 2015;16(2):297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ebrahimi B, Swanson SD, Chupp TE. A microfabricated phantom for quantitative MR perfusion measurements: validation of singular value decomposition deconvolution method. IEEE Trans Biomed Eng. 2010;57(11):2730–2736.

    Article  Google Scholar 

  9. Teh I, Zhou FL, Hubbard Cristinacce PL, Parker GJ, Schneider JE. Biomimetic phantom for cardiac diffusion MRI. J Magn Reson Imaging. 2015;43:594–600

    Google Scholar 

  10. Latt J, Nilsson M, Rydhog A, Wirestam R, Stahlberg F, Brockstedt S. Effects of restricted diffusion in a biological phantom: a q-space diffusion MRI study of asparagus stems at a 3T clinical scanner. Magma. 2007;20(4):213–22.

    Article  PubMed  Google Scholar 

  11. Komlosh ME, Lizak MJ, Horkay F, Freidlin RZ, Basser PJ. Observation of microscopic diffusion anisotropy in the spinal cord using double-pulsed gradient spin echo MRI. Magn Reson Med. 2008;59(4):803–9.

    Article  CAS  PubMed  Google Scholar 

  12. Fieremans E. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson. 2008;190(2):189–199.

    Article  CAS  PubMed  Google Scholar 

  13. Lorenz R, Kreher BW, Hennig J, Anisotropic phantoms for quantitative diffusion tensor imaging and fib. In: Proceedings of ISMRM 14th scientific meeting. Seattle, USA; 2006.

  14. Farrher E, Kaffanke J, Celik AA, Stocker T, Grinberg F, Shah NJ. Novel multisection design of anisotropic diffusion phantoms. Magn Reson Imaging. 2012;30(4):518–26.

    Article  PubMed  Google Scholar 

  15. Kleinberg RL. Utility of NMR T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter rho 2. Magn Reson Imaging. 1996;14(7–8):761–7.

    Article  CAS  PubMed  Google Scholar 

  16. Slijkerman WF, Hofman JP. Determination of surface relaxivity from NMR diffusion measurements. Magn Reson Imaging. 1998;16(5–6):541–4.

    Article  CAS  PubMed  Google Scholar 

  17. Lorenz R, Kreher BW, Henning J. P.o.I.t.S.M.. Anisotropic Fiber Phantom for DTI validation on a clinical scanner, ISMRM 14th Scientific Meeting, Seattle, USA; 2006. p. 1226.

  18. Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36(6):893–906.

    Article  CAS  PubMed  Google Scholar 

  19. Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011;65(6):1532–56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th annual meeting of intl soc mag reson med, Hawaii, USA; 2009. p. 3537

  21. Basir A, de Groot P, Grundeman PF, Tersteeg C, Maas C, Barendrecht A, van Herwaarden J, Kluin J, Moll F, Pasterkamp G, Roest M. In Vitro hemocompatibility testing of dyneema purity fibers in blood contact. Innovations (Phila). 2015;10(3):195–201.

    Article  Google Scholar 

  22. Bennett IJ, Madden DJ, Vaidya CJ, Howard DV, Howard JH. Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging. Hum Brain Mapp. 2010;31(3):378–90.

    PubMed  Google Scholar 

  23. Poveda F, Gil D, Marti E, Andaluz A, Ballester M, Carreras F. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography. Rev Esp Cardiol (Engl Ed). 2013;66(10):782–90.

    Article  Google Scholar 

  24. Qin X, Wang S, Shen M, Zhang X, Wagner MB, Fei B. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound. Proc SPIE. 2014;9036:90361O.

    Article  PubMed Central  Google Scholar 

  25. Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano RA, Aronen HJ, Tatlisumak T. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol. 2002;23(2):194–9.

    PubMed  PubMed Central  Google Scholar 

  26. Widjaja E, Mahmoodabadi SZ, Rea D, Moineddin R, Vidarsson L, Nilsson D. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 T. Acta Radiol. 2009;50(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  27. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.

    Article  PubMed  Google Scholar 

  28. Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama S, Aso T, Fukuyama H, Kikuta K, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-T and 1.5-T diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed. 2007;20(8):743–8.

    Article  PubMed  Google Scholar 

  29. Santarelli X, Garbin G, Ukmar M, Longo R. Dependence of the fractional anisotropy in cervical spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson Imaging. 2010;28(1):70–6.

    Article  PubMed  Google Scholar 

  30. Giannelli M, Cosottini M, Michelassi MC, Lazzarotti G, Belmonte G, Bartolozzi C, Lazzeri M. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys. 2009;11(1):2927.

    PubMed  Google Scholar 

  31. Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, Li KC. Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn Reson Med. 2009;61(4):755–60.

    Article  PubMed  Google Scholar 

  32. Alexander AL, Lee JE, Wu YC, Field AS. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimaging Clin N Am. 2006;16(2):299–309, xi.

    Article  PubMed  Google Scholar 

  33. Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med. 2004;52(5):979–93.

    Article  PubMed  Google Scholar 

  34. Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE. K.A. Il’yasov, Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol. 2006;16(8):1651–8.

    Article  PubMed  Google Scholar 

  35. Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR. 2000;21(10):1813–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Klodowski K, Krzyzak AT. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences. Magn Reson Imaging. 2016;34(4):404–9.

    Article  PubMed  Google Scholar 

  37. Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson P, Kumari V, Duncan JS, Richardson MP, Koepp MJ. Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage. 2010;51(4):1384–94.

    Article  PubMed  Google Scholar 

  38. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47(6):1083–99.

    Article  PubMed  Google Scholar 

  39. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.

    Article  PubMed  Google Scholar 

  40. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

Download references


The authors would like to thank the staff at the Biomedical Engineering Center, School of Electrical and Computer Engineering (UNICAMP) for building the phantom, and the 3T MRI scanner of Clinics Hospital (UNICAMP) staff for assistance with scanner access.


This work was supported by São Paulo Research Foundation (FAPESP, Brazil, Grant—2013/07559-3) through BRAINN (Brazilian Institute of Neuroscience and Neurotechnology), and by the National Council for Scientific and Technological Development (CNPQ, Brazil, Grant—310860/2014-8).

Author information

Authors and Affiliations



Study conception and design: EMS, ETC, GC. Acquisition of data: EMS. Analysis and interpretation of data: EMS, GC. Drafting of manuscript: EMS, ETC, GC. Critical revision: ETC, GC. Approval of the final version: EMS, ETC, GC.

Corresponding author

Correspondence to Edna Marina de Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, E.M., Costa, E.T. & Castellano, G. Investigation of anisotropic fishing line-based phantom as tool in quality control of diffusion tensor imaging. Radiol Phys Technol 12, 161–171 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: