Skip to main content
Log in

Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Radiation dose management is important in interventional radiology (IR) procedures, such as percutaneous coronary intervention, to prevent radiation-induced injuries. Therefore, radiation dose should be monitored in real time during IR. This study evaluated the fundamental characteristics of a novel real-time skin dosimeter (RTSD) developed at our institution. In addition, we compared the performance of our new and old radiation sensors and that of a skin dose monitor (SDM), with ion chamber reference values. We evaluated the fundamental characteristics (e.g., energy dependence, dose dependence, and angular dependence) of the RTSD developed by us in the diagnostic X-ray energy range. The performance of our RTSD was similar to that of the SDM. In particular, the new radiation sensor of our RTSD demonstrated better dose rate dependence compared to the old sensor. In addition, the new sensor had the advantage of being small in size and thus minimally affecting the X-ray images compared to the old sensor. Therefore, the developed skin dosimeter and radiation sensor may be useful in real-time measurement of patients’ exposure to and multi-channel monitoring of radiation in IR procedures. The new dosimeter system can be recommended for visualization and management of the radiation dose to which the patients’ skin is exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. International Commission on Radiological Protection (ICRP). Avoidance of radiation injuries from medical interventional procedures, ICRP Publication 85. Ann ICRP. 2000;30(2):1–53.

    Article  Google Scholar 

  2. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Munehisa M, Kadowaki K. The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically. Acta Radiol. 2012;53:1040–4.

    Article  Google Scholar 

  3. Chida K, Saito H, Otani H, Kohzuki M, Takahashi S, Yamada S, Shirato K, Zuguchi M. Relationship between fluoroscopic time, dose–area product, body weight, and maximum radiation skin dose in cardiac interventional procedure. Am J Roentgenol. 2006;186:774–8.

    Article  Google Scholar 

  4. Chida K, Kagaya Y, Saito H, Chiba H, Takai Y, Takahashi S, Yamada S, Kohzuki M, Zuguchi M. Total entrance skin dose: an effective indicator of the maximum radiation dose to a patient’s skin during percutaneous coronary intervention. Am J Roentgenol. 2007;189:W224–7.

    Article  Google Scholar 

  5. Chida K, Ohno T, Kakizaki S, Takegawa M, Yuuki H, Nakada M, Takahashi S, Zuguchi M. Radiation dose to the pediatric cardiac catheterization and intervention patient. Am J Roentgenol. 2010;195:1175–9.

    Article  Google Scholar 

  6. International Commission on Radiological Protection (ICRP). Radiological protection in cardiology, ICRP Publication 120. Ann ICRP. 2013;42(1):1–100.

    Article  Google Scholar 

  7. Kato M, Chida K, Sato T, Oosaka H, Tosa T, Kadowaki K. Evaluating the maximum patient radiation dose in cardiac interventional procedures. Radiat Prot Dosimetry. 2011;143:69–73.

    Article  Google Scholar 

  8. International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4):1–332.

    Google Scholar 

  9. Chida K, Zuguchi M, Saito H, Otani H, Shirotori K, Kumagai S, Nakayama H, Matsubara K, Kohzuki M. Does digital acquisition reduce patients’ skin dose in cardiac interventional procedures? An experimentalstudy. Am J Roentgenol. 2004;183:1111–4.

    Article  Google Scholar 

  10. Chida K, Inaba Y, Saito H, Ishibashi T, Takahashi S, Kohzuki M, Zuguchi M. Radiation dose of interventional radiology system using a flat-panel detector. Am J Roentgenol. 2009;193:1680–5.

    Article  Google Scholar 

  11. Tsapaki V, Ahmed NA, Alsuwaidi JS, Beganovic A, Benider A, BenOmarane L, et al. Radiation exposure to patients during interventional procedures in 20 countries: initial IAEA project results. Am J Roentgenol. 2009;193:559–69.

    Article  Google Scholar 

  12. Inaba Y, Chida K, Shirotori K, Shimura H, Yanagawa I, Zuguchi M, Takahashi S. Comparison of the radiation dose in a cardiac IVR X-ray system. Radiat Prot Dosimetry. 2011;143(1):74–80.

    Article  Google Scholar 

  13. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Comparison of dose at an interventional reference point between the displayed estimated value and measured value. Radiol Phys Technol. 2011;4:189–93.

    Article  Google Scholar 

  14. Chida K, Inaba Y, Masuyama H, Yanagawa I, Mori I, Saito H, Maruoka S, Zuguchi M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology. Radiol Phys Technol. 2009;2:58–61.

    Article  Google Scholar 

  15. Inaba Y, Chida K, Kobayashi R, Zuguchi M. A cross-sectional study of the radiation dose and image quality of X-ray equipment used in IVR. J Appl Clin Med Phys. 2016;17(4):391–401.

    Article  Google Scholar 

  16. Nakamura M, Chida K, Zuguchi M. Novel dosimeter using a nontoxic phosphor for real-time monitoring of patient radiation dose in interventinal radiology. Am J Roentgenol. 2015;205:202–6.

    Article  Google Scholar 

  17. Chida K, Kato M, Inaba Y, Kobayashi R, Nakamura M, Abe Y, Zuguchi M. Real-time patient radiation dosimeter for use in interventional radiology. Physica Med. 2016;32:1475–8.

    Article  Google Scholar 

  18. Farah J, Cuttat M, Hadid L, Jenny C, Clairand I. Patient dosimetry in interventional radiology: uncertainties associated to skin dose measurement and exposure correlation to online dose indicators. Phys Med. 2015;31:e46-7.

    Article  Google Scholar 

  19. Morishima T, Chida K, Katahira Y, Onodera R, Takeda K, Chiba H. Performance evaluation of a new real-time patient skin dosimeter. Jpn J Clin Radiol. 2011;56(6):779–85 (in Japanease).

    Google Scholar 

  20. Vano E, Escaned J, Vano-Galvan S, Fernandez JM, Galvan C. Importance of a patient dosimetry and clinical follow-up program in the detection of radiodermatitis after long percutaneous coronary interventions. Cardiovasc Intervent Radiol. 2013;36(2):330–7.

    Article  Google Scholar 

  21. Bogaert E, Bacher K, Thierens H. A large-scale multicenter study of patient skin doses in interventional cardiology: dose-area product action levels and dose reference levels. Radiat Prot Dosimetry. 2008;128(3):312–23.

    Article  CAS  Google Scholar 

  22. Johnson PB, Borrego D, Balter S, Johnson K, Siragusa D, Bolch WE. Skin dose mapping for fluoroscopically guided intervntions. Med Phys. 2011;38(10):5490–9.

    Article  Google Scholar 

  23. Borrego D, Marshall EL, Tran T, Siragusa DA, Bolch WE. Physical validation of UF-RIPSA: A rapid in-clinic peak skin dose mapping algorithm for fluoroscopically guided interventions. J Appl Clin Med Phys. 2018;19(3):343–50.

    Article  Google Scholar 

  24. Inaba Y, Chida K, Kobayashi R, Kaga Y, Zuguchi M. Fundamental study of a real-time occupational dosimetry system for interventional radiology staff. J Radiol Prot. 2014;34:N65–71.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Takafumi Honda and Fumitaka Sato of the Tohoku University for their invaluable assistance. This work was supported in part by a Grant-in-Aid for Scientific Research (17K10392) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Inaba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

This article does not contain any studies with human participants performed.

Research involving animals

This article does not contain any studies with animals performed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, Y., Nakamura, M., Chida, K. et al. Effectiveness of a novel real-time dosimeter in interventional radiology: a comparison of new and old radiation sensors. Radiol Phys Technol 11, 445–450 (2018). https://doi.org/10.1007/s12194-018-0484-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-018-0484-z

Keywords

Navigation