Skip to main content

Advertisement

Log in

Impact of quantitative index derived from 123I-FP-CIT-SPECT on reconstruction with correction methods evaluated using a 3D-striatum digital brain phantom

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

We evaluated quantitation accuracy of the specific binding ratio (SBR) and specific uptake ratio (SUR) of dopamine transporter for various correction methods by using a novel three-dimensional striatum digital brain (3D-SDB) phantom comprised of segments containing the striatum, ventricle, brain parenchyma, and skull bone extracted from T2-weighted MR images. A process image was reconstructed by projection data sets with blurring, scatter, and attenuation from 3D-SDB phantom data. A 3D-iterative reconstruction algorithm was used without correction (OSEM), or with scatter (SC), attenuation (AC), AC + SC (ACSC), AC + resolution recovery (RR; ACRR), SC + RR (SCRR), AC + SC + RR (ACSCRR), AC + SC + RR + partial volume (PVC; ACSCRRP), and AC + SC + RR + PVC + ventricle (ACSCRRPV). Data were then quantified using SBR and SUR. Differences between measured and true SBR values were (in order): ACSCRR < ACSC < ACRR < AC < SCRR < SC < OSEM: the maximal error was 45.3%. The trend of differences between measured and true SUR values was similar to that of SBR; maximal error was 65%. The ACSCRR-corrected SUR, which was closer to the true value, was underestimated by 30.4%. However, the ACSCRRP-corrected SUR was underestimated by a maximum of 22.5%. The SUR in the ACSCRRPV was underestimated by 6.2%. The accuracy of quantitation was improved using various types of compensation and correction. Accuracy improved more for the SUR when PVC and ventricle correction were added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Günther I, Hall H, Halldin C, Swahn CG, Farde L, Sedvall G. [125I] beta-CIT-FE and [125I] beta-CIT-FP are superior to [125I] beta-CIT for dopamine transporter visualization: auto-radiographic evaluation in human brain. Nucl Med Biol. 1997;24:629–34.

    Article  PubMed  Google Scholar 

  2. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, Wolters EC, van Royen EA. [123I] FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62:133–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Booij J, Habraken JBA, Bergmans P, Tissingh G, Winogrodzka A, Wolters EC, Janssen AG, Stoof JC, van Royen EA. Imaging of dopamine transporters with Iodine-123-FP-CIT SPECT in Healthy controls and patients with Parkinson’s Disease. J Nucl Med. 1998;39(11):1879–84.

    PubMed  CAS  Google Scholar 

  4. Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brücke T. [123I] beta- CIT and SPECT in essential tremor and Parkinson’s disease. J Neural Transm. 1998;105:1213–28.

    Article  PubMed  CAS  Google Scholar 

  5. Benamer HT, Patterson J, Grosset DG, Booij, De Bruin K, Van Royen E, Speelman JD, Horstink MH, Sips HJ, Dierckx RA, Versijpt J, Decoo D, Van Der Linden C, Hadley DM, Doder M, Lees AJ, Costa DC, Gacinovic S, Oertel WH, Pogarell O, Hoeffken H, Joseph K, Tatsch K, Schwarz J, Ries V. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503–10.

    Article  CAS  PubMed  Google Scholar 

  6. McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, Padovani A, Giubbini R, Bonuccelli U, Volterrani D, Holmes C, Kemp P, Tabet N, Meyer I, Reininger C, DLB Study Group. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6(4):305–13.

    Article  PubMed  Google Scholar 

  7. Badiavas K, Molyvda E, Iakovou I, Tsolaki M, Psarraos K, Karatzas N. SPECT imaging evaluation in movement disorders: far beyond visual assessment. Eur J Nucl Med Mol Imaging. 2011;38:764–73.

    Article  PubMed  Google Scholar 

  8. Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I] FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33:1491–9.

    Article  PubMed  Google Scholar 

  9. GE Healthcare. DaTQUANT™ White Paper. NU-0217-05.12-EN-US DOC1156038.

  10. Takano K, Matsumura K, Watanabe Y, Yamada T, Kubo H, Naitou Y, Kuzuhara S, Takeda K. Phase 1 clinical study of 123-I-FP-CIT, a new radioligand for evaluating dopamine transporter by SPECT (II): Tracer kinetics in the brain. Kakuigaku. 1999;36(9):1013–22 (Japanese).

    CAS  Google Scholar 

  11. Crespo C, Gallego J, Cot A, Falcon C, Bullich S, Pareto D. Aguiaru J, Sempau J, Lomeña F, Calviño F, Pavia J, Ros D. Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation. Eur J Nucl Med Mol Imaging. 2008;35:1334–42.

    Article  PubMed  CAS  Google Scholar 

  12. Buchert R, Kluge A, Tossici-Bolt L, Dickson J, Bronzel M, Lange C, Asenbaum S, Booij J, Atay Kapucu L, Svarer C, Koulibaly PM, Nobili F, Pagani M, Sabri O, Sera T, Tatsch K, Vander Borght T, Van Laere K, Varrone A, Iida H. Reduction in camera-specific variability in [123I] FP-CIT SPECT outcome measures by image reconstruction optimized for multisite setting: impact an age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls. Eur J Nucl Med Mol Imaging. 2016;43:1323–36.

    Article  PubMed  CAS  Google Scholar 

  13. Dickson JC, Tossicl-Bolt L, Sera T, Booij J, Ziebell M, Morbelli S, Assenbaum-Nan S, Borght TV, Pagani M, Kapucu OL, Hesse S, Van Laere K, Darcourt J, Varrone A, Tatsch K. The impact of reconstruction and scanner characterization on the diagnostic capability of a normal database for [123I] FP-CIT SPECT imaging. EJNMMI Res. 2017;7:10. https://doi.org/10.1186/s13550-016-0253-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tossici-Bolts L, Dickson JC, Sera T, Booij J, Asenbaun-Nan B, Bangnara MC, Borght TV, Jonsson C, de Nijs R, Hesse S, Koulibaly PM, Akdemir UO, Koole M, Tatsch K, Varrone A. [123I] FP-CIT ENC-DAT normal database: the impact of the reconstruction and quantification methods. EJNMMI Phys. 2017;4:8. https://doi.org/10.1186/s40658-017-0175-6.

    Article  Google Scholar 

  15. Furuta A, Onishi H. Realistic 3D-striatum digital brain (3D-SDB) phantom studied for its effect on ventricle in the brain for semiquantitative index of specific binding ratio. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73:1018–27 (Japanese).

    Article  PubMed  Google Scholar 

  16. Alpert NM. Berdichevsky D, Levin Z, Morris ED, Fischman AJ. Improved methods for image registration. Neuroimage. 1996;3:10–8.

    Article  PubMed  CAS  Google Scholar 

  17. Maeda H, Yamaki N, Azuma M. Development of the software package of the nuclear medicine data processor for education and research. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2012;68:299–306 (Japanese).

    Article  PubMed  Google Scholar 

  18. National Institute of Standards and Technology. Physical measurement laboratory. XCOM: Photon Cross Sections Database. http://www.nist.gov/pml/data/xcom/. Accessed 2014.

  19. Axelsson B. Masaki P, Iseraelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med. 1984;125:490–9.

    Google Scholar 

  20. Yamaki N, Natsume T, Takeda K, Maeda H, Hasebe S, Kinda A, Motomura N. Simultaneous spatial resolution correction in SPECT reconstruction using OS-EM algorithm. Jpn J Med Phys. 2004;24:61–71 (Japanese).

    Google Scholar 

  21. Shimizu S, Namioka N, Hirose D, Kanetaka H, Hirao K, Hatanaka H, Takenoshita N, Kaneko Y, Ogawa Y, Tsugawa A, Umahara T, Sakurai H, Hanyu H. Comparison of diagnostic utility of semi-quantitative analysis for DAT-SPECT for distinguishing DLB from AD. J Neurol Sci. 2017;377:50–4.

    Article  PubMed  Google Scholar 

  22. Nonokuma M, Kuwabara Y, Hida K, Tani T, Takano K, Yoshimitsu K. Optimal ROI setting on the anatomically normalized I-123 FP-CIT images using high-resolution SPECT. Ann Nucl Med. 2016;30:637–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol. 2004;49:227–34.

    Article  CAS  Google Scholar 

  24. Koch W, Radau PE, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transport SPECT studies. J Nucl Med. 2005;46:1109–18.

    PubMed  Google Scholar 

  25. Calvini P, Rodriguez G, Inguglia F, Mggnone A, Guerra UP, Nobill F. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging. 2007;34:1240–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Digital Image Scientific Research Meeting (Mihara, Hiroshima, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Onishi.

Ethics declarations

Conflict of interest

All other authors declare that they have no conflicts of interest.

Statements of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Statements of animal rights

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furuta, A., Onishi, H., Yamaki, N. et al. Impact of quantitative index derived from 123I-FP-CIT-SPECT on reconstruction with correction methods evaluated using a 3D-striatum digital brain phantom. Radiol Phys Technol 11, 294–302 (2018). https://doi.org/10.1007/s12194-018-0468-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-018-0468-z

Keywords

Navigation