Skip to main content

Advertisement

Log in

Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

In the post-genome era, a novel research field, ‘radiomics’ has been developed to offer a new viewpoint for the use of genotypes in radiology and medicine research which have traditionally focused on the analysis of imaging phenotypes. The present study analyzed brain morphological changes related to the individual’s genotype. Our data consisted of magnetic resonance (MR) images of patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD), as well as their apolipoprotein E (APOE) genotypes. First, statistical parametric mapping (SPM) 12 was used for three-dimensional anatomical standardization of the brain MR images. A total of 30 normal images were used to create a standard normal brain image. Z-score maps were generated to identify the differences between an abnormal image and the standard normal brain. Our experimental results revealed that cerebral atrophies, depending on genotypes, can occur in different locations and that morphological changes may differ between MCI and AD. Using a classifier to characterize cerebral atrophies related to an individual’s genotype, we developed a computer-aided diagnosis (CAD) scheme to identify the disease. For the early detection of cerebral diseases, a screening system using MR images, called Brain Check-up, is widely performed in Japan. Therefore, our proposed CAD scheme would be used in Brain Check-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hayden EC. Technology: the $1,000 genome. Nature. 2014;507(7492):294–5.

    Article  PubMed  CAS  Google Scholar 

  2. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol. 2015;12(8):862–6.

    Article  PubMed  Google Scholar 

  4. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    Article  PubMed  CAS  Google Scholar 

  5. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    Article  PubMed  Google Scholar 

  6. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev. 2016;1(2):207–26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, Seo JB, Leung A. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Cancer. 2017;86:297–307.

    Google Scholar 

  8. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–211.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Doi K. Overview on research and development of computer-aided diagnostic schemes. Semin Ultrasound CT MR. 2004;25(5):404–10.

    Article  PubMed  Google Scholar 

  10. Giger ML. Computerized analysis of images in the detection and diagnosis of breast cancer. Semin Ultrasound CT MR. 2004;25(5):411–8.

    Article  PubMed  Google Scholar 

  11. Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng. 2013;15:327–57.

    Article  PubMed  CAS  Google Scholar 

  12. Li Q, Nishikawa RM. Computer-aided detection and diagnosis in medical imaging. Florida: CRC Press; 2015.

    Book  Google Scholar 

  13. Goldenberg R, Kimmel R, Rivlin E, Rudzsky M. Cortex segmentation: a fast variational geometric approach. IEEE Trans Med Imag. 2002;21(12):1544–51.

    Article  Google Scholar 

  14. Arimura H, Yoshiura T, Kumazawa S, Tanaka K, Koga H, Mihara F, Honda H, Sakai S, Toyofuku F, Higashida Y. Automated method for identification of patients with Alzheimer’s diseases based on three-dimensional MR images. Acad Radiol. 2008;15(3):274–84.

    Article  PubMed  Google Scholar 

  15. Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp. 2000;11(1):12–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, Asada T, Iwabuchi S, Samejima H. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett. 2005;382(3):269–74.

    Article  PubMed  CAS  Google Scholar 

  17. Muñoz-Ruiz M, Hartikainen P, Hall A, Mattila J, Koikkalainen J, Herukka SK, Julkunen V, Vanninen R, Liu Y, Lötjönen J, Soininen H. Disease state fingerprint in frontotemporal degeneration with reference to Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis. 2013;35(4):727–39.

    Article  PubMed  CAS  Google Scholar 

  18. Muñoz-Ruiz M, Hall A, Mattila J, Koikkalainen J, Herukka SK, Husso M, Hänninen T, Vanninen R, Liu Y, Hallikainen M, Lötjönen J, Remes AM, Alafuzoff I, Soininen H, Hartikainen P. Using the disease state fingerprint tool for differential diagnosis of frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Dis Extra. 2016;6(2):313–29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. http://adni.loni.usc.edu/.

  20. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.

    Article  PubMed  CAS  Google Scholar 

  22. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.

    Article  PubMed  CAS  Google Scholar 

  23. Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet. 1993;342(8873):697–9.

    Article  PubMed  CAS  Google Scholar 

  24. http://www.fil.ion.ucl.ac.uk/spm/.

  25. Mori E, Lee K, Yasuda M, Hashimoto M, Kazui H, Hirono N, Matsui M. Accelerated hippocampal atrophy in Alzheimer’s disease with apolipoprotein E ε4 allele. Ann Neurol. 2002;51(2):209–14.

    Article  PubMed  CAS  Google Scholar 

  26. Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, Morris CM, O’Brien JT. Apolipoprotein E ε4 allele, temporal lobe atrophy, and white matter lesions in late-life dementias. Arch Neurol. 1999;56(8):961–5.

    Article  PubMed  CAS  Google Scholar 

  27. Yasuda M, Mori E, Kitagaki H, Yamashita H, Hirono N, Shimada K, Maeda K, Tanaka C. Apolipoprotein E ε4 allele and whole brain atrophy in late-onset Alzheimer’s diseases. Am J Psychiatry. 1998;155(6):779–84.

    PubMed  CAS  Google Scholar 

  28. Huynh E, Coroller TP, Narayan V, Agrawal V, Romano J, Franco I, Parmar C, Hou Y, Mak RH, Aerts HJ. Associations of radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS One. 2017;12(1):e0169172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, Liang C, Tian J, Liang C. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology. 2016;281(3):947–57.

    Article  PubMed  Google Scholar 

  30. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, Mak R, Aerts HJ. Exploratory study to identify radiomics classifiers for lung cancer histology. Front Oncol. 2016;6:71.

    PubMed  PubMed Central  Google Scholar 

  31. Parmar C, Leijenaar RT, Grossmann P, Rios Velazquez E, Bussink J, Rietveld D, Rietbergen MM, Haibe-Kains B, Lambin P, Aerts HJ. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci Rep. 2015;5:11044.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.

    Article  PubMed  Google Scholar 

  33. Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, Fan C, Conzen SD, Zuley M, Net JM, Sutton E, Whitman GJ, Morris E, Perou CM, Ji Y, Giger ML. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer. 2016;2:16012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, Conzen SD, Whitman GJ, Sutton EJ, Net JM, Ganott M, Huang E, Morris EA, Perou CM, Ji Y, Giger ML. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology. 2016;281(2):382–91.

    Article  PubMed  Google Scholar 

  35. Guo W, Li H, Zhu Y, Lan L, Yang S, Drukker K, Morris E, Burnside E, Whitman G, Giger ML, Ji Y, Tcga Breast Phenotype Research Group. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging. 2015;2(4):041007.

    Article  Google Scholar 

  36. Wang J, Kato F, Oyama-Manabe N, Li R, Cui Y, Tha KK, Yamashita H, Kudo K, Shirato H. Identifying triple-negative breast cancer using background parenchymal enhancement heterogeneity on dynamic contrast-enhanced mri: a pilot radiomics study. PLoS One. 2015;10(11):e0143308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, Wang Y, Chen L, Mao Y. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017;27(8):3509–22.

    Article  PubMed  Google Scholar 

  38. Robert TM, Friedman TJ. The elements of statistical learning, Data mining, inference and prediction. 2nd ed. New York: Springer; 2009.

    Google Scholar 

Download references

Acknowledgements

This study was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 17K09067), by the Japan Society for the Promotion of Science and a Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy No. 26108001) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Uchiyama.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human rights

All study procedures involving human participants were performed in accordance with the ethical standards of the Institutional Review Board (IRB) and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

We used data from a public database in this study. The IRB of our institute allowed us to use data from those cases.

Animal rights

This study did not involve any animal models.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kai, C., Uchiyama, Y., Shiraishi, J. et al. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol 11, 265–273 (2018). https://doi.org/10.1007/s12194-018-0462-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-018-0462-5

Keywords

Navigation