Output factor determination based on Monte Carlo simulation for small cone field in 10-MV photon beam

  • Kyohei Fukata
  • Satoru Sugimoto
  • Chie Kurokawa
  • Akito Saito
  • Tatsuya Inoue
  • Keisuke Sasai
Article
  • 106 Downloads

Abstract

The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.

Keywords

Dosimetry Monte Carlo SRS Small field 

Notes

Acknowledgements

The authors would like to thank the radiotherapy-related staffs in Juntendo University Hospital for giving us the opportunity for fruitful measurement.

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to declare for this study.

Statement of human and animal rights

There is no animal or humans involved in this study.

Informed consent

There are no human subjects involved in this work.

References

  1. 1.
    Schell MC, Bova FJ, Larson DA, Leavitt DD, Lutz WR, Podgorsak EB, Wu A (1995) Stereotactic Radiosurgery Report of Task Group 42 Radiation Therapy Committee. Oncol 54:.Google Scholar
  2. 2.
    Das IJ, Downes MB, Kassaee A, Tochner Z. Choice of radiation detector in dosimetry of stereotactic radiosurgery-radiotherapy. J Radiosurgery. 2000;3:177–86.  https://doi.org/10.1023/A:1009594509115.CrossRefGoogle Scholar
  3. 3.
    Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tomé WA, Verellen D, Wang L, Yin F-F, Tomé WA, Verellen D, Wang L, Yin F-F. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37:4078–101.  https://doi.org/10.1118/1.3438081.CrossRefPubMedGoogle Scholar
  4. 4.
    Li XA, Soubra M, Szanto J, Gerig LH. Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. Med Phys. 1995;22:1167–70.  https://doi.org/10.1118/1.597508.CrossRefPubMedGoogle Scholar
  5. 5.
    Francescon P, Cora S, Cavedon C, Scalchi P, Reccanello S, Colombo F. Use of a new type of radiochromic film, a new parallel-plate micro-chamber, MOSFETs, and TLD 800 microcubes in the dosimetry of small beams. Med Phys. 1998;25:503–11.  https://doi.org/10.1118/1.598227.CrossRefPubMedGoogle Scholar
  6. 6.
    Sauer OA, Wilbert J. Measurement of output factors for small photon beams. Med Phys. 2007;34:1983.  https://doi.org/10.1118/1.2734383.CrossRefPubMedGoogle Scholar
  7. 7.
    Scott AJD, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35:4671–84.  https://doi.org/10.1118/1.2975223.CrossRefPubMedGoogle Scholar
  8. 8.
    Das IJ, Cheng C-W, Watts RJ, Ahnesjö A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC. Accelerator beam data commissioning equipment and procedures: report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35:4186.  https://doi.org/10.1118/1.2969070.CrossRefPubMedGoogle Scholar
  9. 9.
    Francescon P, Cora S, Cavedon C. Total scatter factors of small beams: a multidetector and Monte Carlo study. Med Phys. 2008;35:504.  https://doi.org/10.1118/1.2828195.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Underwood TSA, Winter HC, Hill MA, Fenwick JD. Detector density and small field dosimetry: integral versus point dose measurement schemes. Med Phys. 2013;40:82102.  https://doi.org/10.1118/1.4812687.CrossRefGoogle Scholar
  11. 11.
    Underwood TSA, Winter HC, Hill MA, Fenwick JD. Mass-density compensation can improve the performance of a range of different detectors under non-equilibrium conditions. Phys Med Biol. 2013;58:8295–310.  https://doi.org/10.1088/0031-9155/58/23/8295.CrossRefPubMedGoogle Scholar
  12. 12.
    Czarnecki D, Zink K. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields. Phys Med Biol. 2013;58:2431–44.  https://doi.org/10.1088/0031-9155/58/8/2431.CrossRefPubMedGoogle Scholar
  13. 13.
    Fenwick JD, Kumar S, Scott AJD, Nahum AE. Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields. Phys Med Biol. 2013;58:2901–23.  https://doi.org/10.1088/0031-9155/58/9/2901.CrossRefPubMedGoogle Scholar
  14. 14.
    Francescon P, Kilby W, Satariano N. Monte Carlo simulated correction factors for output factor measurement with the CyberKnife system—results for new detectors and correction factor dependence on measurement distance and detector orientation. Phys Med Biol. 2014;59:N11–7.  https://doi.org/10.1088/0031-9155/59/6/N11.CrossRefPubMedGoogle Scholar
  15. 15.
    Benmakhlouf H, Sempau J, Andreo P. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study. Med Phys. 2014;41:41711.  https://doi.org/10.1118/1.4868695.CrossRefGoogle Scholar
  16. 16.
    Kamio Y, Bouchard H. Correction-less dosimetry of nonstandard photon fields: a new criterion to determine the usability of radiation detectors. Phys Med Biol. 2014;59:4973–5002.  https://doi.org/10.1088/0031-9155/59/17/4973.CrossRefPubMedGoogle Scholar
  17. 17.
    Dieterich S, Sherouse GW. Experimental comparison of seven commercial dosimetry diodes for measurement of stereotactic radiosurgery cone factors. Med Phys. 2011;38:4166.  https://doi.org/10.1118/1.3592647.CrossRefPubMedGoogle Scholar
  18. 18.
    Araki F, Moribe N, Shimonobou T, Yamashita Y. Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and Cyber-Knife. Med Phys. 2004;31:1980–6.  https://doi.org/10.1118/1.1758351.CrossRefGoogle Scholar
  19. 19.
    Sham E, Seuntjens JP, Devic S, Podgorsak EB. Influence of focal spot on characteristics of very small diameter radiosurgical beams. Med Phys. 2008;35:3317–30.  https://doi.org/10.1118/1.2936335.CrossRefPubMedGoogle Scholar
  20. 20.
    Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI. Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors. Med Phys. 2011;38:6592.  https://doi.org/10.1118/1.3658572.CrossRefPubMedGoogle Scholar
  21. 21.
    Francescon P, Cora S, Satariano N. Calculation of k(Q(clin), Q(msr)) (f(clin), f(msr)) for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys. 2011;38:6513–27.  https://doi.org/10.1118/1.3660770.CrossRefPubMedGoogle Scholar
  22. 22.
    Weston S, Evans JA, Sidhu NP, Cranmer-Sargison G, Weston S, Evans JA, Sidhu NP, Thwaites DI. Monte Carlo modelling of diode detectors for small field MV photon dosimetry: detector model simplification and the sensitivity of correction factors to source parameterization. Phys Med Biol. 2012;57:5141.  https://doi.org/10.1088/0031-9155/57/16/5141.CrossRefPubMedGoogle Scholar
  23. 23.
    Disher B, Hajdok G, Gaede S, Mulligan M, Battista JJ. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer. Phys Med Biol. 2013;58:6641–62.  https://doi.org/10.1088/0031-9155/58/19/6641.CrossRefPubMedGoogle Scholar
  24. 24.
    Kawrakow I, Rogers DWO. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC Report PIRS-701, 2000.Google Scholar
  25. 25.
    Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual, NRCC Report PIRS-0509. Stand: Ioniz Radiat; 2005.Google Scholar
  26. 26.
    Walters B, Kawrakow I, Rogers DWO. DOSXYZnrc users manual. NRC Rep PIRS. 2005;794:1–125.  https://doi.org/10.1118/1.4773883.Google Scholar
  27. 27.
    Savitzky A, Golay MJE. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem. 1964;36:1627–39.  https://doi.org/10.1021/ac60214a047.CrossRefGoogle Scholar
  28. 28.
    Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR (2005) The EGS5 Code System, SLAC-Report-730 and KEK Report 2005-8. SLAC National Accelerator Laboratory and High Energy Accelerator Research Organization.Google Scholar
  29. 29.
    ICRU Report No.37 Stopping powers for electrons and positrons. In: International Commission on Radiation Units and Measurements. WashingtonGoogle Scholar
  30. 30.
    Mainegra-Hing E (2017) User Manual for egs inprz, a GUI for the NRC RZ user-codes. NRCC Rep PIRS-801(RevB) 801:1–35.Google Scholar
  31. 31.
    Alfonso R, Andreo P, Capote R, Huq MS, Kilby W, Kjäll P, Mackie TR, Palmans H, Rosser K, Seuntjens J, Ullrich W, Vatnitsky S. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35:5179–86.  https://doi.org/10.1118/1.3005481.CrossRefPubMedGoogle Scholar
  32. 32.
    Ding GX. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam. Med Phys. 2002;29:2459–63.  https://doi.org/10.1118/1.1514237.CrossRefPubMedGoogle Scholar
  33. 33.
    Martens C, De Wagter C, De Neve W. The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol. 2000;45:2519–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Bjärngard BE, Siddon RL. A note on equivalent circles, squares, and rectangles. Med Phys. 1982;9:258–60.  https://doi.org/10.1118/1.595161.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu PZY, Suchowerska N, Mckenzie DR. Can small field diode correction factors be applied universally? Radiother Oncol. 2014;112:442–6.  https://doi.org/10.1016/j.radonc.2014.08.009.CrossRefPubMedGoogle Scholar
  36. 36.
    Lechner W, Palmans H, Sölkner L, Grochowska P, Georg D. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol. 2013;109:356–60.  https://doi.org/10.1016/j.radonc.2013.10.022.CrossRefPubMedGoogle Scholar
  37. 37.
    Bassinet C, Huet C, Derreumaux S, Brunet G, Chéa M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P, Boisserie G, Clairand I. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys. 2013;40:71725.  https://doi.org/10.1118/1.4811139.CrossRefGoogle Scholar
  38. 38.
    Shimono T, Koshida K, Hidekazu A, Ae N, Matsubara K, Hiroshi A, Ae T, Okuda H, Nambu H, Matsubara K, Takahashi H, Okuda H. Polarity effect in commercial ionization chambers used in photon beams with small fields. Radiol Phys Technol. 2009;2:97–103.  https://doi.org/10.1007/s12194-008-0050-1.CrossRefPubMedGoogle Scholar
  39. 39.
    Park K, Bak J, Park S, Choi W, Park SW. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method. Phys Med Biol. 2016;61:1293–308.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Radiological Technology and Japan Society of Medical Physics 2018

Authors and Affiliations

  1. 1.Cancer CenterKeio University School of MedicineTokyoJapan
  2. 2.Graduate School of MedicineJuntendo UniversityTokyoJapan
  3. 3.Department of Radiation OncologyHiroshima University HospitalHiroshimaJapan
  4. 4.Department of RadiologyJuntendo University Urayasu HospitalTomioka 2-1-1, Urayasu-shi, ChibaJapan

Personalised recommendations