Skip to main content
Log in

Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The observation of molecular diffusion by means of magnetic resonance imaging (MRI) is significant in the evaluation of the metabolic activity of living tissues. Series of MRI examinations were conducted on a diffusion model to study the behaviour of the diffusion process of different-molecular-weight (MW) paramagnetic MRI contrast agents in an isotropic agar hydrogel medium. The model consisted of a solidified 1 % agar gel with an initial concentration of 0.5 mmol/L contrast solution layered on top of the gel. The diffusion process was monitored at pre-determined time intervals of immediately, 1, 6, 9, 23, and 48 h after introduction of the contrast agents onto the agar gel with a T1-weighted spin-echo (SE) pulse sequence. Three types of paramagnetic contrast agents, Gd-DTPA with a MW of 547.57 g/mol, Prohance with a MW of 558.69 g/mol and MnCl2 with a MW of 125.84 g/mol, resulted in an approximate average diffusional displacement ratio of 1:1:2 per hour, respectively, within 48 h of the experiment. Therefore, the results of this study supported the hypothesis that the rate of the diffusion process of MRI contrast agents in the agar hydrogel medium is inversely related to their MWs. However, more repetitions are necessary under various types of experimental conditions and also with various types of contrast media of different MWs for further confirmation and validation of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed. 2015;10:1727–41.

    CAS  Google Scholar 

  2. Osuga T, Han S. Proton magnetic resonance imaging of diffusion of high- and low-molecular-weight contrast agents in opaque porous media saturated with water. Magn Reson Imaging. 2004;22:1039–42.

    Article  CAS  PubMed  Google Scholar 

  3. Marty B, Flament J, Giraudeau C, Robic C, Port M, Lethimonnier F, et al. Apparent diffusion coefficient of Gd-based contrast agents assessed in vivo in the rat brain using dynamic T1 mapping. Ismrm. 2010;18:5572.

    Google Scholar 

  4. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, et al. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med. 2000;43:368–74.

    Article  CAS  PubMed  Google Scholar 

  5. Curso-Semedo L, Caseiro-Alves F. MR Contrast agents. In: Gourtsoyiannis NC, editor. Clin MRI abdomen [Internet]. 1st ed. Berlin: Springer; 2011. p. 17–39. Available from: http://link.springer.com/10.1007/978-3-540-85689-4. Accessed 26 Nov 2015.

  6. Bjørmerud A. The physics of magnetic resonance imaging. Department of Physics, University of Oslo; 2008. Available from: http://www.uio.no/studier/emner/matnat/fys/FYS-KJM4740/v14/kompendium/compendium-mri-feb-2009.pdf. Accessed 26 Nov 2015.

  7. Holz M, Strecker EP, Weiss KH. NMR tomography for the visualization of the diffusion of Gd-DTPA in agar-gel and in brain tissue–in vitro studies. Eur J Radiol. 1987;7:137–41.

    CAS  PubMed  Google Scholar 

  8. Han H, Shi C, Fu Y, Zuo L, Lee K, He Q, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain (2013). IEEE J Biomed Heal Inf. 2014;18:978–83.

    Article  Google Scholar 

  9. Ibrahim MA, Haughton VM, Hyde JS. Effect of disk maturation on diffusion of low-molecular-weight gadolinium complexes: an experimental study in rabbits. Am J Neuroradiol. 1995;16:1307–11.

    CAS  PubMed  Google Scholar 

  10. Gussoni M, Greco F. Vezzoli a, Osuga T, Zetta L. Magnetic resonance imaging of molecular transport in living morning glory stems. Magn Reson Imaging. 2001;19:1311–22.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, McCarthy MJ. Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Technol. 2012;67:96–101. doi:10.1016/j.postharvbio.2011.12.018.

    Article  CAS  Google Scholar 

  12. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24.

    Article  PubMed  Google Scholar 

  13. Perlewitz TJ, Haughton VM, Riley LH, Nguyen-Minh C, George V. Effect of molecular weight on the diffusion of contrast media into cartilage. Spine (Phila Pa 1976). 1997;22:2707–10.

    Article  CAS  Google Scholar 

  14. Shafieyan Y, Khosravi N, Moeini M, Quinn TM. Diffusion of MRI and CT contrast agents in articular cartilage under static compression. Biophys. J. 2014;107:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Penkova AN, Rattanakijsuntorn K, Tang Y, Moats R, Robinson MR, Lee SS, et al. Bovine vitreous diffusion coefficient measurement and comparison of prohance with Gd-DTPA. Invest Ophthalmol Vis Sci. 2014;55:5251 (The Association for Research in Vision and Ophthalmology).

    Google Scholar 

  16. Nicholson C, Tao L. Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. Biophys J. 1993;65:2277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson EM, Berk DA, Jain RK, Deen WM. Diffusion and partitioning of proteins in charged agarose gels. Biophys J. 1995;68:1561–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raguin G, Falkenberg CV, Prakash S, Fitz Henry HR, Mensing G, Ciobanu L, et al. Magnetic resonance imaging (MRI) of water diffusion in 2-hydroxyethyl methacrylate (HEMA) gels. MRS Proc. 2011. doi:10.1557/PROC-930-JJ04-05.

  19. Kalavagunta C, Metzger G. A field comparison of r1 and r2* relaxivities of Gd-DTPA in aqueous solution and whole blood: 3T versus 7T. Proc Intl Soc Magn Reson Med. 2010;18:4990.

    Google Scholar 

  20. Tseng, Q. AdaptiveThreshold—ImageJ plugin [Internet]. Available from: https://sites.google.com/site/qingzongtseng/adaptivethreshold#description. Accessed 6 June 2016

  21. Adaptive Thresholding [Internet]. Available from: http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm. Accessed 6 June 2016.

  22. Gonzalez RCR, Woods RER. Digital image processing. Leonardo: Pearson Education; 2009.

    Google Scholar 

  23. Brix G, Kolem H, Nitz WR, Bock M, Huppertz A, Zech C. CJ, et al. Magnetic resonance tomography. In: Reiser M, Semmler W, Hricak H, editors. Berlin: Springer; 2008. p. 92–108. Available from: https://books.google.com/books?id=C4Tuzckp3oQC&pgis=1. Accessed 24 Nov 2015.

  24. Wang J, Zhao K, Shen X, Zhang W, Ji S, Song Y, et al. Microfluidic synthesis of ultra-small magnetic nanohybrids for enhanced magnetic resonance. J Mater Chem C. 2015. doi:10.1039/C5TC02279G.

    Google Scholar 

  25. Giers MB, McLaren AC, Plasencia JD, Frakes D, McLemore R, Caplan MR. Spatiotemporal quantification of local drug delivery using MRI. Comput Math Methods Med. 2013;2013:149608.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kapoustina V, Ross-Jones J, Hitschler M, Rädle M, Repke JU. Direct spatiotemporally resolved fluorescence investigations of gas absorption and desorption in liquid film flows. Chem Eng Res Des. 2015;99:248–55.

    Article  CAS  Google Scholar 

  27. Buckley D, Parker G. Measuring contrast agent concentration in T1-weighted dynamic contrast-enhanced MRI. Dyn Contrast Enhanc Magn Reson Imaging Oncol. 2005;69–79.

  28. Bokacheva L, Rusinek H, Chen Q, Oesingmann N, Prince C, Kaur M, et al. Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies. Magn Reson Med. 2007;57:1012–8.

    Article  CAS  PubMed  Google Scholar 

  29. Bellin M-F. MR contrast agents, the old and the new. Eur J Radiol. 2006;60:314–23.

    Article  PubMed  Google Scholar 

  30. Aronson JK. Side effects of drugs annual: a worldwide yearly survey of new data and trends in adverse drug reactions [Internet]. Elsevier; 2005. Available from: http://books.google.co.za/books?id=HF3L09pALLwC. Accessed 17 May 2016.

  31. Froehlich JM. MR Contrast Agents. In: Weishaupt D, Köchli VD, Marincek B, editors. How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging. 2nd ed. Berlin, Heidelberg: Springer; 2006. p. 103–28.

    Google Scholar 

  32. Osuga T, Obata T, Ikehira H. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging. Magn Reson Imaging. 2004;22:417–20.

    Article  CAS  PubMed  Google Scholar 

  33. Wu Y-K, Fang T-S, Chen D-C, Liu G-Q, Xu Y-K. A comparative study of Gd-DTPA and HSA-Gd-DTPA in magnetic resonance lymphography. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27:1597–600.

    CAS  PubMed  Google Scholar 

  34. Shahbazi-Gahrouei D, Williams M, Allen BJ. In vitro study of relationship between signal intensity and gadolinium-DTPA concentration at high magnetic field strength. Australas Radiol. 2001;45:298–304.

  35. Yu S-MM, Choi S-HH, Kim S-SS, Goo E-HH, Ji Y-SS, Choe B-YY. Correlation of the R1 and R2 values of gadolinium-based MRI contrast media with the ΔHounsfield unit of CT contrast media of identical concentration. Curr Appl Phys. 2013;13:857–63.

  36. Morkenborg J, Pedersen M, Jensen FT, Stodkilde-Jorgensen H, Djurhuus JC, Frokiaer J. Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: an in vitro study. Magn Reson Imaging. 2003;21:637–43.

    Article  CAS  PubMed  Google Scholar 

  37. Poh CK, Hardy PA, Liao Z, Clark WR, Gao D. Nonintrusive characterization of fluid transport phenomena in hollow-fiber membrane modules using MRI: an innovative experimental approach. Membr Sci Technol [Internet]. Elsevier; 2003. p. 89–122. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0927519303800086. Accessed 30 Dec 2015.

  38. Funai AK. Regularized estimation of main and RF field inhomogeneity and longitudinal relaxation rate in magnetic resonance imaging by. Ann Arbor: The University of Michigan; 2011.

    Google Scholar 

  39. Chen X, Astary GW, Sepulveda H, Mareci TH, Sarntinoranont M. Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI. Magn Reson Imaging. 2008;26:1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, et al. T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res. 2014;16:2678.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano. 2012;6:7281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin S-P, Brown JJ. MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging. 2007;25:884–99.

    Article  PubMed  Google Scholar 

  43. Bayer HealthCare Pharmaceuticals Inc. MAGNEVIST (brand of gadopentetate dimeglumine) [Internet]. Wayne, NJ 07470; 2013. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/019596s056,021037s029lbl.pdf. Accessed 17 May 2016.

Download references

Acknowledgments

The authors highly appreciate and are thankful for the support given by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT: Japanese Government MONBUKAGAKUSHO Scholarship program) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimali Sanjeevani Weerakoon.

Ethics declarations

Conflict of interest

The authors declare that this manuscript has no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weerakoon, B.S., Osuga, T. Relative diffusion of paramagnetic metal complexes of MRI contrast agents in an isotropic hydrogel medium. Radiol Phys Technol 10, 82–90 (2017). https://doi.org/10.1007/s12194-016-0370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0370-5

Keywords

Navigation