Skip to main content
Log in

Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kourilsky R, Marchalm M, Marchal MT. A new method of functional x-ray exploration of the lungs: photoelectric statidensigraphy. Dis chest. 1962;42:345–58.

    Article  CAS  PubMed  Google Scholar 

  2. Andrews AH, Jensik R, Pfisterer WH. Fluoroscopic pulmonary densiography. Dis chest. 1959;35:117–26.

    Article  PubMed  Google Scholar 

  3. Steiner RE, Laws JW, Gilbert J, Mcdonnell MJ. Radiologic lung-function studies. Lancet. 1960;2:1051–5.

    Article  Google Scholar 

  4. Oderr C. Air trapping, pulmonary insufficiency and fluorodensimetry. Am J Roentgen. 1964;92:501–12.

    CAS  PubMed  Google Scholar 

  5. George RB, Weill H, Tahir AH. Fluorodensimetric evaluation of regional ventilation in chronic obstructive pulmonary disease. South Med J. 1971;64:1161–5.

    Article  CAS  PubMed  Google Scholar 

  6. George RB, Weill H. Fluorodensimetry. A method for analyzing regional ventilation and diaphragm function. JAMA. 1971;217:171–6.

    Article  CAS  PubMed  Google Scholar 

  7. Silverman NR. Clinical video-densitometry pulmonary ventilation analysis. Radiology. 1972;103:263–5.

    Article  CAS  PubMed  Google Scholar 

  8. Silverman NR, Intaglietta M, Simon AL, Tompkins WR. Determination of pulmonary pulsatile perfusion by fluoroscopic videodensitometry. J Appl Physiol. 1972;33:147–9.

    CAS  PubMed  Google Scholar 

  9. Silverman NR, Intaglietta M, Tompkins WR. Pulmonary ventilation and perfusion during graded pulmonary arterial occlusion. J Appl Physiol. 1973;34:726–31.

    CAS  PubMed  Google Scholar 

  10. Rogers RM, Kuhl DE, Hyde RW, et al. Measurement of the vital capacity and perfusion of each lung by fluoroscopy and macroaggregated albumin lung scanning. An alternative to bronchospirometry for evaluating. Ann Intern Med. 1967;67:947–56.

    Article  CAS  PubMed  Google Scholar 

  11. Toffolo RR, Beerel FR. The autofluoroscope and 133-Xe in dynamic studies of pulmonary perfusion and ventilation. Radiology. 1970;94:692–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lam KL, Chan HP, MacMahon H, et al. Dynamic digital subtraction evaluation of regional pulmonary ventilation with nonradioactive xenon. Invest. Radiolo. 1990;25:728–35.

    Article  CAS  Google Scholar 

  13. Fujita H, Doi K, MacMahon H. Basic imaging properties of a large image intensifier-TV digital chest radiographic system. Invest. Radiol. 1987;22:328–35.

    Article  CAS  PubMed  Google Scholar 

  14. Bursch JH. Densitometric studies in digital subtraction angiography: assessment of pulmonary and myocardial perfusion. Herz. 1985;10:208–14.

    CAS  PubMed  Google Scholar 

  15. Liang J, Jarvi T, Kiuru A, Kormano M, Svedström E. Dynamic chest image analysis: model-based perfusion analysis in dynamic pulmonary imaging. J Appl Signal Process. 1985;5:437–48.

    Google Scholar 

  16. Hoffmann KR, Doi K, Fencil LE. Determination of instantaneous and average blood flow rates from digital angiograms of vessel phantoms using distance-density curves. Invest Radiol. 1991;26:207–12.

    Article  CAS  PubMed  Google Scholar 

  17. Desprechins B, Luypaert R, Delree M, et al. Evaluation of time interval difference digital subtraction fluoroscopy patients with cystic fibrosis. Scand J Gastroenterol Suppl. 1988;143:86–92.

    Article  CAS  PubMed  Google Scholar 

  18. Kiuru A, Svedstrom E, Kuuluvainen I. Dynamic imaging of pulmonary ventilation. Description of a novel digital fluoroscopic system. Acta Radiol. 1991;32:114–9.

    CAS  PubMed  Google Scholar 

  19. Kiuru A, Svedstrom E, Korvenranta H, et al. Dynamic pulmonary imaging: performance properties of a digital fluoroscopy system. Med Phys. 1992;19:467–73.

    Article  CAS  PubMed  Google Scholar 

  20. Vano E, Geiger B, Schreiner A, et al. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality. Phys Med Biol. 2005;50:5731–42.

    Article  CAS  PubMed  Google Scholar 

  21. Srinivas Y, Wilson DL. Image quality evaluation of flat panel and image intensifier digital magnification in x-ray fluoroscopy. Med Phys. 2002;29:1611–21.

    Article  PubMed  Google Scholar 

  22. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Fujimura M, Yasui M, Matsui T, Nakayama K, Nanbu Y, Matsui O. Evaluation of pulmonary function using breathing chest radiography with a dynamic flat-panel detector (FPD): primary results in pulmonary diseases. Invest Radiol. 2006;41:735–45.

    Article  PubMed  Google Scholar 

  23. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Nakayama K, Matsui T, Hayashi N, Matsui O. Quantification and visualization of relative local ventilation on dynamic chest radiographs. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 6143, No. 2; 2006. p. 1–8 (62432Y).

  24. Tanaka R, Sanada S, Fujimura M, Yasui M, Nakayama K, Matsui T, Hayashi N, Matsui O. Development of functional chest imaging with a dynamic flat-panel detector (FPD). Radiol Phys Technol. 2008;1:137–43.

    Article  PubMed  Google Scholar 

  25. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilatory impairment detection based on distribution of respiratory-induced changes in pixel values in dynamic chest radiography: a feasibility study. IJCARS. 2011;6:103–10.

    Google Scholar 

  26. Tanaka R, Sanada S, Tsujioka K, Matsui T, Takata T, Matsui O. Development of a cardiac evaluation method using a dynamic flat-panel detector (FPD) system: a feasibility study using a cardiac motion phantom. Radiol Phys Technol. 2008;1:27–32.

    Article  PubMed  Google Scholar 

  27. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Pulmonary blood flow evaluation using a dynamic flat-panel detector: feasibility study with pulmonary diseases. IJCARS. 2009;4:449–54.

    Google Scholar 

  28. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Development of pulmonary blood flow evaluation method with a dynamic flat-panel detector (FPD): quantitative correlation analysis with findings on perfusion scan. Radiol Phys Technol. 2010;3:40–5.

    Article  PubMed  Google Scholar 

  29. Tanaka R, Sanada S, Fujimura M, Yasui M, Tsuji S, Hayashi N, Okamoto H, Nanbu Y, Matsui O. Ventilation-perfusion study without contrast media in dynamic chest radiography. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 7965; 2011. p. 1–7 (79651Y).

  30. Tanaka R., Sanada S, Kobayashi T, Suzuki M, Matsui T, Hayashi N, Nanbu Y. Automated analysis for the respiratory kinetics with the screening dynamic chest radiography using a flat-panel detector system. In: Computer Assisted Radiology and Surgery. Proceeding; 2003. 179–186.

  31. Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Inoue H. Breathing chest radiography using a dynamic flat-panel detector (FPD) with computer analysis for a screening examination. Med Phys. 2004;31:2254–62.

    Article  PubMed  Google Scholar 

  32. Tanaka R, Sanada S, Kobayashi T, Suzuki M, Matsui T, Matsui O. Computerized methods for determining respiratory phase on dynamic chest radiographs obtained by a dynamic flat-panel detector (FPD) system. J Digit Imaging. 2006;19:41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fraser RS, Muller NL, Colman NC, Pare PD. Fraser and Pare’s Diagnosis of Diseases of the Chest. 4th ed. W.B. Saunders Company: Philadelphia, London, New York, St. Louise, Sydney, and Toronto; 1999.

  34. West JB. Ventilation—how gas gets to the alveoli. Respiratory physiology: the essentials. 3rd ed. Philadelphia: Lippincott Williams & Wilkinss; 2000. p. 11–9.

    Google Scholar 

  35. Squire LF, Novelline RA. Fundamentals of Radiology, 4th ed. Harvard University: Cambridge, Massachusetts, and London; 1988.

  36. Hansen JT, Koeppen BM. Cardiovascular Physiology, In: Netter’s Atlas of Human Physiology (Netter Basic Science). Icon Learning Systems: Teterboro, New Jersey; 2002.

  37. Tanaka R, Sanada S, Okazaki N, Kobayashi T, Suzuki M, Matsui T, Matsui O. Detectability of regional lung ventilation with flat-panel detector-based dynamic radiography. J. Digit. Imag. 2008;21:109–20.

    Article  Google Scholar 

  38. Heyneman LE. The chest radiograph: Reflections on cardiac physiology. In: Radiological Society of North America. Scientific Assembly and Annual Meeting Program; 2005, p. 145.

  39. Goodman LR. Felson’s principles of chest roentgenology, a programmed text. London, Toronto, Philadelphia: W B Saunders Co; 2006.

    Google Scholar 

  40. Turner AF, Lau FY, Jacobson G. A method for the estimation of pulmonary venous and arterial pressures from the routine chest roentgenogram. Am J Roentgenol Radium Ther Nucl Med. 1972;116:97–106.

    Article  CAS  PubMed  Google Scholar 

  41. Chang CH. The normal roentgenographic measurement of the right descending pulmonary artery in 1085 cases. Am J Roentgenol Radium Ther Nucl Med. 1962;87:929–35.

    CAS  PubMed  Google Scholar 

  42. Pistolesi M, Milne EN, Miniati M, Giuntini C. The vascular pedicle of the heart and the vena azygos. Part II: Acquired heart disease. Radiology. 1984;152:9–17.

    Article  CAS  PubMed  Google Scholar 

  43. Kawashima H, Tanaka R, Matsubara K, et al. Temporal-spatial characteristic evaluation in a dynamic flat-panel detector system. In: The international society for optical engineering. Medical imaging. Proceedings of SPIE. Vol. 7622; 2010. p. 1–8 (76224T).

  44. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. International atomic energy agency (IAEA): Vienna; 1996.

  45. Xu XW, Doi K. Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. Med Phys. 1995;22:617–26.

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Zheng Y, Kallergi M, Clark RA. Improved method for automatic identification of lung regions on chest radiographs. Acad Radiol. 2001;8:629–38.

    Article  CAS  PubMed  Google Scholar 

  47. Katsuragawa S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: detection and characterization of interstitial lung disease in digital chest radiographs. Med Phys. 1988;15:311–9.

    Article  CAS  PubMed  Google Scholar 

  48. Katsuragawa S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: classification of normal and abnormal lungs with interstitial disease in chest images. Med Phys. 1989;16:38–44.

    Article  CAS  PubMed  Google Scholar 

  49. Katsuragawa S, Doi K, Nakamori N, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: effect of digital parameters on the accuracy of computerized analysis of interstitial disease in digital chest radiographs. Med Phys. 1990;17:72–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ashizawa K, Ishida T, MacMahon H, Vyborny CJ, Katsuragawa S, Doi K. Artificial neural networks in chest radiology: application to the differential diagnosis of interstitial lung disease. Acad Radiol. 1999;6:2–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ishida T, Katsuragawa S, Kobayashi T, MacMahon H, Doi K. Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis. Med Phys. 1997;24:915–92.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamori N, Doi K, MacMahon H, Sasaki Y, Montner S. Effect of heart size parameters computed from digital chest radiographs on detection of cardiomegaly: potential usefulness for computer–aided diagnosis. Invest Radiol. 1991;26:546–50.

    Article  CAS  PubMed  Google Scholar 

  53. Kano A, Doi K, MacMahon H, Hassell DD, Giger ML. Digital image subtraction of temporally sequential chest images for detection of interval change. Med Phys. 1994;21:453–61.

    Article  CAS  PubMed  Google Scholar 

  54. Ishida T, Ashizawa K, Engelmann R, Katsuragawa S, MacMahon H, Doi K. Application of temporal subtraction for detection of interval changes on chest radiographs: improvement of subtraction images using automated initial image matching. J Digit Imaging. 1999;12:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rank K, Unbehauen R. An adaptive recursive 2-D filter for removal of Gaussian noise in images. IEEE Trans Image Process. 1992;1:431–6.

    Article  CAS  PubMed  Google Scholar 

  56. Hoffmann KR, Doi K, Chen SH, Chan HP. Automated tracking and computer reproduction of vessels in DSA images. Invest Radiol. 1990;25:1069–75.

    Article  CAS  PubMed  Google Scholar 

  57. Chen QS, Weinhous MS, Deibel FC, Ciezki JP, Macklis RM. Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys. 2001;28:1850–6.

    Article  CAS  PubMed  Google Scholar 

  58. Richter A, Wilbert J, Baier K, et al. Feasibility study for markerless tracking of lung tumors in stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:618–27.

    Article  PubMed  Google Scholar 

  59. Tsuchiya Y, Kodera Y, Tanaka R, Sanada S. Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector. J. Digit. Imag. 2009;2:126–35.

    Article  Google Scholar 

  60. Tanaka R, Sanada S, Oda M, Suzuki M, Sakuta K, Kawashima H, Iida H. “Circulation map” projected on functional chest radiography with a dynamic FPD. ECR Electron Poster Present. 2013;. doi:10.1594/ecr2013/C-0279.

    Google Scholar 

  61. Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16.

    Article  PubMed  Google Scholar 

  62. Knapp J, et.al. Feature Based Neural Network Regression for Feature Suppression, U.S. Patent Number, 8,204,292 B2; 2012.

  63. Tanaka R, Sanada S, Sakuta K, Kawashima H. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT). Phys Med Biol. 2015;60:N209–18.

    Article  PubMed  Google Scholar 

  64. Tanaka R, Sanada S, Sakuta K, Kawashima H, Kishitani Y. Low-dose dynamic chest radiography combined with bone suppression technique. ECR Electron Poster Present. 2015;. doi:10.1594/ecr2015/C-0239.

    Google Scholar 

  65. Tanaka R, Sanada S, Sakuta K, Kawashima H. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results. J Med Imaging. 2015;2:024002.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to the staff in the department of Radiology, Respiratory Medicine, and Respiratory Surgery, Clinical Laboratory, Kanazawa University Hospital, and staff from Canon Inc., for their assistance with clinical data acquisitions, and to Shigeru Sanada, PhD, for his frequent support over the course of the project, and Nobuo Okazaki, MD, for his intellectual debate on respiratory physiology. This work was supported in part by The Ministry of Education, Culture, Sports, Science and Technology, MEXT KAKENHI Grant Number 16K10271, 24601007, 19790860; JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy) JSPS KAKENHI Grant Number 15H01113; The Tateisi Science and Technology Foundation, Nakashima Foundation, Konica Minolta Science and Technology Foundation, Suzuken Memorial Foundation, Japan Cardiovascular Research Foundation, Nakatani Foundation, The Mitani Foundation for Research and Development, and The Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rie Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, R. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging. Radiol Phys Technol 9, 139–153 (2016). https://doi.org/10.1007/s12194-016-0361-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0361-6

Keywords

Navigation