Skip to main content
Log in

Preliminary study of apparent diffusion coefficient assessment after ion beam therapy for hepatocellular carcinoma

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

We evaluated the state of hepatocellular carcinoma (HCC) and the liver after ion beam therapy by analyzing the apparent diffusion coefficient (ADC). In this retrospective study, we evaluated 13 HCC lesions in 10 patients who underwent magnetic resonance imaging before and after therapy. Diffusion-weighted imaging was performed with use of b values of 0, 150, and 800 s/mm2. The ADC was determined for the tumor, irradiated liver, and normal liver. The maximum size of the tumor was measured, and reduction in tumor size was determined as a ratio of the maximum size of the diameter of the tumor. We compared the ADC before and after the therapy with the reduction in tumor size ratio. The reduction in tumor size ratio was compared with the ADCs of the tumors. The ADC of the tumor and the irradiated liver were significantly higher after therapy than before therapy. The ADC of the normal liver was not significantly different before and after therapy. The reduction ratio increased significantly (R = 0.73, P = 0.006) after therapy at the second follow-up when compared with after therapy at the first follow-up. No correlation was found between the reduction ratio and the ADC of the tumor in each follow-up. Inflammation of the liver occurs after treatment as a result of radiation doses from the ion beam, and the tumor reaches a state of necrosis. ADC value analysis provides a non-invasive assessment and yields focal information regarding the tumor and liver before and after ion beam therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kew MC. Epidemiology of hepatocellular carcinoma. Toxicology. 2002;181–182:35–8.

    Article  PubMed  Google Scholar 

  2. Ribeiro A, Nagorney DM, Gores GJ. Localized hepatocellular carcinoma: therapeutic options. Curr Gastroenterol Rep. 2000;2:72–81.

    Article  CAS  PubMed  Google Scholar 

  3. Lo CM, Ngan H, Tso WK, Liu CM, Poon RT, Fan ST, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–71.

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, et al. Arterial embolization or chemoembolization versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomized controlled trial. Lancet. 2002;359:1734–9.

    Article  PubMed  Google Scholar 

  5. Higuchi T, Kikuchi M, Okazaki M. Hepatocellular carcinoma after transcatheter hepatic arterial embolization. Cancer. 1994;73:2259–67.

    Article  CAS  PubMed  Google Scholar 

  6. Adachi E, Matsumata T, Nishizaki T, Hashimoto H, Tsuneyoshi M, Sugimachi K. Effects of preoperative transcatheter hepatic arterial chemoembolization for hepatocellular carcinoma. Cancer. 1993;72:3593–8.

    Article  CAS  PubMed  Google Scholar 

  7. Curley SA, Izzo F, Ellis LM, Nicolas Vauthey J, Vallone P. Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg. 2000;232:381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robertson JM, Lawrence TS, Dworzanin LM, Andrews JC, Walker S, Kessler ML, et al. Treatment of primary hepatobiliary cancers with conformal radiation therapy and regional chemotherapy. J Clin Oncol. 1993;11:1286–93.

    CAS  PubMed  Google Scholar 

  9. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965;93:200–8.

    CAS  PubMed  Google Scholar 

  10. Tsujii H, Tsuji H, Inada T, Maruhashi A, Hayakawa Y, Takada Y, et al. Clinical results of fractionated proton therapy. Int J Radiat Oncol Biol Phys. 1993;25:49–60.

    Article  CAS  PubMed  Google Scholar 

  11. Slater JM, Archambeau JO, Miller DW, Notarus MI, Preston W, Slater JD, et al. The proton treatment center at Loma Linda University Medical Center: rationale for and description of its development. Int J Radiat Oncol Biol Phys. 1992;22:383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tobias CA, Blakely EA, Alpen EL, Castro JR, Ainsworth EJ, Curtis SB, et al. Molecular and cellular radiobiology of heavy ions. Int J Radiat Oncol Biol Phys. 1982;12:2109–20.

    Article  Google Scholar 

  13. Kato H, Tsujii H, Miyamoto T, Mizoe JE, Kamada T, Tsuji H, et al. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys. 2004;59:1468–76.

    Article  PubMed  Google Scholar 

  14. Asayama Y, Yoshimitsu K, Irie H, Nishihara Y, Aishima S, Tajima T, et al. Poorly versus moderately differentiated hepatocellular carcinoma: vascularity assessment by computed tomographic hepatic angiography in correlation with histologically counted number of unpaired arteries. J Comput Assist Tomogr. 2007;31:188–92.

    Article  PubMed  Google Scholar 

  15. Chen CY, Li CW, Kuo YT, Jaw TS, Wu DK, Jao JC, et al. Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion. constants–initial experience. Radiology. 2006;239:448–56.

    Article  PubMed  Google Scholar 

  16. Eccles CL, Haider EA, Haider MA, Fung S, Lockwood G, Dawson LA. Change in diffusion-weighted MRI during liver cancer radiotherapy: preliminary observations. Acta Oncol. 2009;48:1034–43.

    Article  PubMed  Google Scholar 

  17. Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. Am J Roentgenol. 2007;188:1001–8.

    Article  Google Scholar 

  18. Wybranski C, Zeile M, Löwenthal D, Fischbach F, Pech M, Röhl FW, et al. Value of diffusion weighted MR imaging as an early surrogate parameter for evaluation of tumor response to high-dose-rate brachytherapy of colorectal liver metastases. Radiat Oncol. 2011;6:43.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rhee TK, Naik NK, Deng J, Atassi B, Mulcahy MF, Kulik LM, et al. Tumor response after yttrium-90 radioembolization for hepatocellular carcinoma: comparison of diffusion-weighted functional MR imaging with anatomic MR imaging. J Vasc Interv Radiol. 2008;19:1180–6.

    Article  PubMed  Google Scholar 

  20. Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastasis. Radiology. 2008;248:894–900.

    Article  PubMed  Google Scholar 

  21. Kanai T, Matsufuji N, Miyamoto T, Mizoe J, Kamada T, Tsuji H, et al. Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol Biol Phys. 2006;64(2):650–6.

    Article  PubMed  Google Scholar 

  22. Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging. 2010;32(1):2–16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonekamp S, Corona-Villalobos CP, Kamel IR. Oncologic applications of diffusion-weighted MRI in the body. J Magn Reson Imaging. 2012;35(2):257–79.

    Article  PubMed  Google Scholar 

  25. Seidensticker M, Seidensticker R, Mohnike K, Wybranski C, Kalinski T, Luess S, et al. Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes. Radiat Oncol. 2011;6:40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology. 2008;249:891–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kei Katahira, Yuki Yamamoto, and Masaki Suga at the Department of Radiation Technology, Hyogo Ion Beam Medical Center, for their technological support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Kanamoto.

Ethics declarations

Conflict of interest

I declare that I have no conflict of interest in connection with this paper.

Funding

This research received no specific grant form any funding agency in the public, commercial, or not-for-profit sectors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamoto, M., Miyati, T., Terashima, K. et al. Preliminary study of apparent diffusion coefficient assessment after ion beam therapy for hepatocellular carcinoma. Radiol Phys Technol 9, 233–239 (2016). https://doi.org/10.1007/s12194-016-0354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-016-0354-5

Keywords

Navigation