Skip to main content
Log in

Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

For X-ray diagnosis, the proper management of the entrance skin dose (ESD) is important. Recently, a small-type optically stimulated luminescence dosimeter (nanoDot OSL dosimeter) was made commercially available by Landauer, and it is hoped that it will be used for ESD measurements in clinical settings. Our objectives in the present study were to propose a method for calibrating the ESD measured with the nanoDot OSL dosimeter and to evaluate its accuracy. The reference ESD is assumed to be based on an air kerma with consideration of a well-known back scatter factor. We examined the characteristics of the nanoDot OSL dosimeter using two experimental conditions: a free air irradiation to derive the air kerma, and a phantom experiment to determine the ESD. For evaluation of the ability to measure the ESD, a calibration curve for the nanoDot OSL dosimeter was determined in which the air kerma and/or the ESD measured with an ionization chamber were used as references. As a result, we found that the calibration curve for the air kerma was determined with an accuracy of 5 %. Furthermore, the calibration curve was applied to the ESD estimation. The accuracy of the ESD obtained was estimated to be 15 %. The origin of these uncertainties was examined based on published papers and Monte-Carlo simulation. Most of the uncertainties were caused by the systematic uncertainty of the reading system and the differences in efficiency corresponding to different X-ray energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amy Berrington de Gonzalez, Sarah Darby. Risk of cancer from diagnostic X-ray: estimates for the UK and 14 other countries. Lancet. 2004;363:345–51.

    Article  Google Scholar 

  2. Uffmann M, Prokop CS. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72:202–8.

    Article  PubMed  Google Scholar 

  3. Komiya I, Shirasaka T, Umezu Y, Tachibana M, Izumi T. Patient dose measurement with fluorescent glass dosimeter: characteristics evaluation and patient skin dose measurement in abdominal interventional radiology. Jpn J Radiol Technol. 2003;60(2):270–7 (In Japanese).

    Google Scholar 

  4. Hatori N, Habu T, Sakaino K, Matsumoto M, Niibe H, Katoh M. Practical use and characteristics of thermoluminescence dosimeters as a personal monitor. Jpn J Radiol. 1977;37(7):691–702 (In Japanese).

    CAS  Google Scholar 

  5. Matsunaga Y, Kawaguchi A, Kobayashi K, Asada Y, Takikawa Y, Yamada M, Suzuki S. Dose estimation for exposure conditions of diagnostic radiology acquired by a 2011 questionnaire in a phantom study. Jpn J Radiol Technol. 2013;69(12):1372–8 (In Japanese).

    Article  Google Scholar 

  6. Grosswendt B. Backscatter factors for x-rays generated at voltages between 10 and 100 keV. Phys Med Biol. 1954;29(5):579–91.

    Article  Google Scholar 

  7. Klevenhagen SC. Experimentally determined backscatter factors for x-rays generated at voltages between 16 and 140 kV. Phys Med Biol. 1989;34(12):1871–82.

    Article  Google Scholar 

  8. Grosswendt B. Dependences of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Phys Med Biol. 1990;35(9):1233–45.

    Article  Google Scholar 

  9. Kato H. Method of calculating the backscatter factor for diagnostic X-rays using the differential backscatter factor. Jpn J Radiol Technol. 2001;57(12):1503–10 (In Japanese).

    Google Scholar 

  10. Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34(12):4594–604.

    Article  PubMed  Google Scholar 

  11. Reft CS. The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams. Med Phys. 2009;36(5):1690–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann J, Dunn L, Lye JE, Kenny JW, Alves ADC, Cole A, Asena A, Kron T, Williams IM. Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams. Med Phys. 2014;41(6):061712-1-9.

    Google Scholar 

  13. Kerns JR, Kry SF, Sahoo N, Followill DS, Ibbott GS. Angular dependence of the nanoDot OSL dosimeter. Med Phys. 2011;38(7):3955–62.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Al-Senan RM, Hatab MR. Characteristics of an OSLD in the diagnostic energy range. Med Phys. 2011;38(7):4396–405.

    Article  PubMed  Google Scholar 

  15. Hayashi H, Nakagawa K, Okino H, Takegami K, Okazaki T, Kobayashi I. High accuracy measurements by consecutive readings of OSL dosimeter. Med Imaging Inf Sci. 2014;31(2):28–34 (In Japanese).

    Google Scholar 

  16. Tappouni R, Mathers B. Scan quality and entrance skin dose in thoracic CT—a comparison between bismuth breast shield and posteriorly centered partial CT scans. ISRN Radiol. 2013; article ID 457396.

  17. Kobayashi I, Suzuki A, Sekiguchi H, Morishima H. Discussion on light annealing method of OSL dosimeter. Jpn J Radiat Saf Manag. 2002;1(2):84–8 (In Japanese).

    Google Scholar 

  18. Nakagawa K, Hayashi H, Okino H, Takegami K, Okazaki T, Kobayashi I. Fabrication of annealing equipment for optically stimulated luminescence (OSL) dosimeter. Jpn J Radiol Technol. 2014;70(10):1135–42 (In Japanese).

    Article  Google Scholar 

  19. Takegami K, Hayashi H, Konishi Y, Fukuda I. Development of multistage collimator for narrow beam production using filter guides of diagnostic X-ray equipment and improvement of apparatuses for practical training. Med Imaging Inf Sci. 2013;30(4):101–7 (In Japanese).

    Google Scholar 

  20. Hubbell JH. Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV. Int J Appl Radiat Isot. 1982;33:1269–90.

    Article  CAS  Google Scholar 

  21. Hirayama H, Yoshihito N, Bielajew AF, Wilderman SJ, Nelson WR. The EGS5 Code System. SLAC Report number: SLAC-R-730. KEK Report number: 2005-8. 2013.

  22. Birch R, Marshall M. Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys Med Biol. 1979;24(3):505–17.

    Article  CAS  PubMed  Google Scholar 

  23. Tucker DM, Barnes GT, Chakraborty DP. Semiempirical model for generating tungsten target x-ray spectra. Med Phys. 1991;18(2):211–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi H, Fukumoto A, Hanamitsu H, Nishihara S, Kamiya N. Practical calculation method of diagnostic X-ray spectrum using EGS5 code. Med Imaging Inf Sci. 2012;29(3):62–7 (In Japanese).

    Google Scholar 

  25. Hayashi H, Takegami K, Okino H, Nakagawa K, Okazaki T, Kobayashi I. Procedure to measure angular dependences of personal dosimeters by means of diagnostic X-ray equipment. Med Imaging Inf Sci. 2015;32(1):8–14.

    Google Scholar 

  26. Okazaki T, Hayashi H, Takegami K, Okino H, Nakagawa K. Evaluation of angular dependence of nanoDot OSL dosimeters toward direct measurement of entrance skin dose. Eur Congr Radiol (EPOS#3009). 2015;. doi:10.1594/ecr2015/C-0721.

    Google Scholar 

Download references

Conflict of interest

T. Okazaki and I. Kobayashi are employees of Nagase Landauer, Ltd. and collaborating researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Hayashi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takegami, K., Hayashi, H., Okino, H. et al. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region. Radiol Phys Technol 8, 286–294 (2015). https://doi.org/10.1007/s12194-015-0318-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0318-1

Keywords

Navigation