Skip to main content
Log in

Dose calculation accuracies in whole breast radiotherapy treatment planning: a multi-institutional study

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our objective in this study was to evaluate the variation in the doses delivered among institutions due to dose calculation inaccuracies in whole breast radiotherapy. We have developed practical procedures for quality assurance (QA) of radiation treatment planning systems. These QA procedures are designed to be performed easily at any institution and to permit comparisons of results across institutions. The dose calculation accuracy was evaluated across seven institutions using various irradiation conditions. In some conditions, there was a >3 % difference between the calculated dose and the measured dose. The dose calculation accuracy differs among institutions because it is dependent on both the dose calculation algorithm and beam modeling. The QA procedures in this study are useful for verifying the accuracy of the dose calculation algorithm and of the beam model before clinical use for whole breast radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ICRU. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures. ICRU Report 24. Washington (DC): ICRU; 1976. 67 p.

  2. AAPM. Physical aspects of quality assurance in radiation therapy. AAPM report no. 13. New York: American Institute of Physics; 1984.

  3. AAPM. Tissue inhomogeneity corrections for megavoltage photon beams. AAPM report no. 85. 2004.

  4. ESTRO. Monitor unit calculation for high energy photon beams—practical examples. ESTRO booklet no. 6. 2001.

  5. Stern RL, Heaton R, Fraser MW. Verification of monitor unit calculations for non-IMRT clinical radiotherapy report of AAPM Task Group 114. Med Phys. 2011;38(1):504–30.

    Article  PubMed  Google Scholar 

  6. Molineu A, Followill DS, Balter PA, et al. Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the radiation therapy oncology group. Int J Radiat Oncol Biol Phys. 2005;63(2):577–83.

    Article  PubMed  Google Scholar 

  7. Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25(10):1773–829.

    Article  CAS  PubMed  Google Scholar 

  8. ESTRO. Quality assurance of treatment planning systems practical examples for non-IMRT photon beams. ESTRO booklet no. 7. 2004.

  9. IAEA. Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. IAEA Technical report series (TRS) no. 430. 2004.

  10. Shi C, Papanikolaou N, Yan Y, et al. Analysis of the sources of uncertainty for EDR2 film-based IMRT quality assurance. J Appl Clin Med Phys. 2006;7:1–8.

    Article  CAS  PubMed  Google Scholar 

  11. van Battum LJ, Hoffmans D, Piersma H, et al. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: what level is achievable? Med Phys. 2008;35:704–16.

    Article  PubMed  Google Scholar 

  12. Japan Society of Medical Physics (JSMP). Research report of the dosimetric verification of IMRT. JJMP. 2010; 30(6):1–210 (in Japanease).

  13. IAEA. The use of plane-parallel ionization chambers in high-energy electron and photon beams. An international code of practice for dosimetry. IAEA TRS no. 381. 1995.

  14. IAEA. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA TRS no. 398. 2004.

  15. Fujita Y, Tohyama N, Myojoyama A, et al. Depth scaling of solid phantom for intensity modulated radiotherapy beams. J Radiat Res. 2010;51(6):707–13.

    Article  PubMed  Google Scholar 

  16. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys. 1989;16(4):577–92.

    Article  CAS  PubMed  Google Scholar 

  17. Esch AV, Tilikainen L, Pyykkonen J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33:4130–48.

    Article  PubMed  Google Scholar 

  18. Ulmer W, Harder D. A triple Gaussian pencil beam model for photon beam treatment planning. Z Med Phys. 1995;5:25–30.

    Article  Google Scholar 

  19. Ulmer W, Harder D. Applications of a triple Gaussian pencil beam model for photon beam treatment planning. Z Med Phys. 1996;6:68–74.

    Article  Google Scholar 

  20. VARiAN medical systems. Eclipse algorithms reference guide. 2006; I:2–3—I:2–25.

  21. Storchi P, Woudstra E. Calculation of the absorbed dose distribution due to irregularly shaped photon beams using pencil-beam kernels derived from basic beam data. Phys Med Biol. 1996;41(4):637–56.

    Article  CAS  PubMed  Google Scholar 

  22. Storchi PR, van Battum LJ, Woudstra E. Calculation of a pencil-beam kernel from measured photon beam data. Phys Med Biol. 1999;44(12):2917–28.

    Article  CAS  PubMed  Google Scholar 

  23. Miften M, Wiesmeyer M, Monthofer S, et al. Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system. Phys Med Biol. 2000;45(4):817–33.

    Article  CAS  PubMed  Google Scholar 

  24. Miften M, Wiesmeyer M, Kapur A, et al. Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys. 2001;2(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  25. Clarkson JR. A note on depth doses in fields of irregular shape. Br J Radiol. 1941;14:265–8.

    Article  Google Scholar 

  26. Khan FM. The physics of radiation therapy third edition. Chapter 9: Dose distribution and scatter analysis. Philadelphia: Lippingcott Williams & Wilkins, 2003. pp. 159–177.

  27. Bidmead AM, Garton AJ, Childs PJ. Beam data measurements for dynamic wedges on Varian 600C (6-MV) and 2100C (6- and 18-MV) linear accelerators. Phys Med Biol. 1995;40(3):393–411.

    Article  CAS  PubMed  Google Scholar 

  28. Klein EE, Low DA, Meigooni AS, et al. Dosimetry and clinical implantation of dynamic wedge. Int J Radiat Oncol Biol Phys. 1995;31(3):583–92.

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Zhu TC, Palta JR. Characterizing output for dynamic wedges. Med Phys. 1996;23(7):1213–8.

    Article  CAS  PubMed  Google Scholar 

  30. Liu HH, McCullough EC, Mackie TR. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method. Med Phys. 1998;25(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  31. Weber L, Ahnesjo A, Nilsson P. Verification and implementation of dynamic wedge calculations in a treatment planning system based on a dose-to-energy-fluence formalism. Med Phys. 1996;23(3):307–16.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas SJ, Foster KR. Radiotherapy treatment planning with dynamic wedges—an algorithm for generating wedge factors and beam data. Phys Med Biol. 1995;40(9):1421–33.

    Article  CAS  PubMed  Google Scholar 

  33. Michael F, David CH, Boris I. Some implementations of the boxplot. Am Stat. 1989;43(1):50–4.

    Google Scholar 

  34. Ezzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003;30(8):2089–115.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed by the Medical Physics Working Group in the Radiation Therapy Study Group of the Japan Clinical Oncology Group. It was supported in part by the National Cancer Center Research and Development Fund (23-A-21).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Hatanaka.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatanaka, S., Miyabe, Y., Tohyama, N. et al. Dose calculation accuracies in whole breast radiotherapy treatment planning: a multi-institutional study. Radiol Phys Technol 8, 200–208 (2015). https://doi.org/10.1007/s12194-015-0308-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-015-0308-3

Keywords

Navigation