Skip to main content
Log in

Simulation for improvement of system sensitivity of radiochromic film dosimetry with different band-pass filters and scanner light intensities

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The delivered dose of high-energy photon beams is measured with radiochromic film. Previous studies sought to improve the system sensitivity of radiochromic film dosimetry by use of band-pass filters. However, band-pass filters reduce the scanning light intensity. To avoid a reduction of the signal-to-noise ratio, one must increase the scanner light intensity. Our purposes in this study were to develop an optical system model of GAFCHROMIC EBT2 radiochromic film dosimetry, and to estimate the system sensitivity characteristics by employing a combination of band-pass filters and scanner light intensities. The spectra of the scanner light source, band-pass filter, and irradiated EBT2 films were measured with a spectrometer. Meanwhile, the intensity of a light path from the scanner light source to the scanner detector was simulated. Then, the dose–response curves were computed with six simulated virtual band-pass filters of varying bandwidth. The simulated dose–response curves were in good agreement with the experimental values. The slope of the simulated dose–response curve was steeper when a filter of narrower bandwidth was used; however, at the same time, saturation was observed at a lower dose. For achieving the same dose response as was observed without a band-pass filter, it was necessary to increase the scanner light intensity. We proved that our proposed optical system model was valid, suggesting that a realistic simulation may be feasible with the proposed model. For improvement of the system sensitivity of radiochromic film dosimetry, it is necessary to select a well-balanced combination of band-pass filter and scanner light intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsai J, Wazer D, Ling M, Wu J, Fagundes M, DiPetrillo T, et al. Dosimetric verification of the dynamic intensity-modulated radiation therapy of 92 patients. Int J Radiat Oncol Biol Phys. 1998;40:1213–30.

    Article  PubMed  CAS  Google Scholar 

  2. Arnfield M, Wu Q, Tong S, Mohan R. Dosimetric validation for multileaf collimator-based intensity-modulated radiotherapy: a review. Med Dosim. 2001;26:179–88.

    Article  PubMed  CAS  Google Scholar 

  3. Ting J, Davis L. Dose verification for patients undergoing IMRT. Med Dosim. 2001;26:205–13.

    Article  PubMed  CAS  Google Scholar 

  4. Ezzell G, Burmeister J, Dogan N, LoSasso T, Mechalakos J, Mihailidis D, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys. 2009;36:5359–73.

    Article  PubMed  Google Scholar 

  5. Alber M, Broggi S, Wagter CD, Eichwurzel I, Engström P, Fiorino C, et al. ESTRO booklet no. 9: guidelines for the verification of IMRT. ESTRO physics booklets. vol 2010. ESTRO: Brussels; 2008.

  6. Poppe B, Blechschmidt A, Djouguela A, Kollhoff R, Rubach A, Willborn K, et al. Two-dimensional ionization chamber arrays for IMRT plan verification. Med Phys. 2006;33:1005–15.

    Article  PubMed  Google Scholar 

  7. Zhu X, Jursinic P, Grimm D, Lopez F, Rownd J, Gillin M. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys. 2002;29:1687–92.

    Article  PubMed  CAS  Google Scholar 

  8. Langen K, Meeks S, Poole D, Wagner T, Willoughby T, Zeidan O, et al. Evaluation of a diode array for QA measurements on a helical tomotherapy unit. Med Phys. 2005;32:3424–30.

    Article  PubMed  CAS  Google Scholar 

  9. Srivastava R, De Wagter C. The value of EDR2 film dosimetry in compensator-based intensity modulated radiation therapy. Phys Med Biol. 2007;52:N449–57.

    Article  PubMed  CAS  Google Scholar 

  10. Herzen J, Todorovic M, Cremers F, Platz V, Albers D, Bartels A, et al. Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine. Phys Med Biol. 2007;52:1197–208.

    Article  PubMed  CAS  Google Scholar 

  11. Jursinic PA, Nelms BE. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery. Med Phys. 2003;30:870–9.

    Article  PubMed  Google Scholar 

  12. Van Esch A, Clermont C, Devillers M, et al. On-line quality assurance of rotational radiotherapy treatment delivery by means of a 2D ion chamber array and the Octavius phantom. Med Phys. 2007;34:3825–37.

    Article  PubMed  Google Scholar 

  13. Butson M, Cheung T, Yu P. Weak energy dependence of EBT Gafchromic film dose response in the 50 kVp–10 MVp X-ray range. Appl Radiat Isot. 2006;64:60–2.

    Article  PubMed  CAS  Google Scholar 

  14. Cheung T, Butson M, Yu P. Measurement of high energy x-ray beam penumbra with Gafchromic EBT radiochromic film. Med Phys. 2006;33:2912–4.

    Article  PubMed  Google Scholar 

  15. Stevens M, Turner J, Hugtenburg R, Butler P. High-resolution dosimetry using radiochromic film and a document scanner. Phys Med Biol. 1996;41:2357–65.

    Article  PubMed  CAS  Google Scholar 

  16. Rink A, Vitkin I, Jaffray D. Energy dependence (75 kVp to 18 MV) of radiochromic films assessed using a real-time optical dosimeter. Med Phys. 2007;34:458–63.

    Article  PubMed  CAS  Google Scholar 

  17. Cheung T, Butso M, Yu P. Use of multiple layers of Gafchromic film to increase sensitivity. Phys Med Biol. 2001;46:N235–40.

    Article  PubMed  CAS  Google Scholar 

  18. Geso M, Ackerly T, Patterson W. Improving radiochromic film’s sensitivity by wrapping it with UV phosphor. Med Phys. 2004;31:1014–6.

    Article  PubMed  CAS  Google Scholar 

  19. Butson M, Cheung T, Yu P. Corresponding dose response of radiographic film with layered gafchromic film. Phys Med Biol. 2002;47:N285–9.

    Article  PubMed  Google Scholar 

  20. Devic S, Tomic N, Pang Z, Seuntjens J, Podgorsak E, Soares C. Absorption spectroscopy of EBT model GAFCHROMIC film. Med Phys. 2007;34:112–8.

    Article  PubMed  CAS  Google Scholar 

  21. Butson M, Cheung T, Yu P. Absorption spectra variations of EBT radiochromic film from radiation exposure. Phys Med Biol. 2005;50:N135–40.

    Article  PubMed  CAS  Google Scholar 

  22. Butson M, Cheung T, Yu P, Alnawaf H. Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med. 2009;32:196–202.

    Article  PubMed  CAS  Google Scholar 

  23. Saylor MC, Tamargo TT, McLaughlin WL, Khan HM, Lewis DF, Schenfele RD. A thin film recording medium for use in food irradiation. Radiat Phys chem. 1988;31:529–36.

    CAS  Google Scholar 

  24. McLaughlin WL, Chen YD, Soares CG, Miller A, Dyke GV, Lewis DF. Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl Instrum Methods Phys Res A. 1991;302:165–76.

    Article  Google Scholar 

  25. McLaughlin WL, Puhl JM, Al-Sheikhly, Christou CA, Miller A, Kovács A, et al. Novel radiochromic films for clinical dosimetry. Radiat Prot Dosimetry. 1996;66:263–68.

  26. Hato H, Aoyama H, Azuma Y, Goto S, Sumimoto T. Increasing the sensitivity of the dosimetry system for high energy X-rays, using Gafchromic EBT film and a flat-bed scanner with sharp cut filters. IFMBE Proceedings World Congress on Medical Physics and Biomedical Engineering. 2007;14:2138–41.

  27. Ranade M, Li J, Dubose R, Kozelka J, Simon W, Dempsey J. A prototype quantitative film scanner for radiochromic film dosimetry. Med Phys. 2008;35:473–9.

    Article  PubMed  Google Scholar 

  28. Odero D, Gluckman G, Welsh K, Wlodarczyk R, Reinstein L. The use of an inexpensive red acetate filter to improve the sensitivity of GAFChromic dosimetry. Med Phys. 2001;28:1446–8.

    Article  PubMed  CAS  Google Scholar 

  29. Niroomand-Rad A, Blackwell C, Coursey B, Gall K, Galvin J, McLaughlin W, et al. Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. American Association of Physicists in Medicine. Med Phys. 1998;25:2093–115.

    Article  PubMed  CAS  Google Scholar 

  30. Klassen NV, van der Zwan L, Cygler J. GafChromic MD-55: investigated as a precision dosimeter. Med Phys. 1997;24:1924–34.

    Article  PubMed  CAS  Google Scholar 

  31. Muench PJ, Meigooni AS, Nath R, et al. Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLDs used for brachytherapy dosimetry. Med Phys. 1991;18:769–75.

    Article  PubMed  CAS  Google Scholar 

  32. Nishio T, Kunieda E, Shirato H, Ishikura S, Onishi H, Tateoka K, et al. Dosimetric verification in participating institutions in a stereotactic body radiotherapy trial for stage I non-small cell lung cancer: Japan clinical oncology group trial (JCOG0403). Phys Med Biol. 2006;51:5409–17.

    Article  PubMed  Google Scholar 

  33. International Specialty Products. GAFCHROMIC® EBT2 self-developing film for radiotherapy dosimetry. http://online1.ispcorp.com/_layouts/Gafchromic/content/products/ebt2/pdfs/GAFCHROMICEBT2TechnicalBrief-Rev1.pdf.

  34. Fuss M, Sturtewagen E, De Wagter C, et al. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance. Phys Med Biol. 2007;52:4211–25.

    Article  PubMed  Google Scholar 

  35. Wilcox E, Daskalov G, Nedialkova L. Comparison of the epson expression 1680 flatbed and the vidar VXR-16 dosimetry PRO film scanners for use in IMRT dosimetry using gafchromic and radiographic film. Med Phys. 2007;34:41–8.

    Article  PubMed  Google Scholar 

  36. Kapulsky A, Mullokandov E, Gejerman G. An automated phantom-film QA procedure for intensity-modulated radiation therapy. Med Dosim. 2002;27:201–7.

    Article  PubMed  CAS  Google Scholar 

  37. Butson M, Cheung T, Yu P. Evaluation of the magnitude of EBT Gafchromic film polarization effects. Australas Phys Eng Sci Med. 2009;32:21–5.

    Article  PubMed  CAS  Google Scholar 

  38. Desroches J, Bouchard H, Lacroix F. Potential errors in optical density measurements due to scanning side in EBT and EBT2 Gafchromic film dosimetry. Med Phys. 2010;37:1565–70.

    Article  PubMed  Google Scholar 

  39. Saur S, Frengen J. GafChromic EBT film dosimetry with flatbed CCD scanner: a novel background correction method and full dose uncertainty analysis. Med Phys. 2008;35:3094–101.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant No. 20229009). This study was presented at the 99th Scientific Congress of the Japan Society of Medical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sawada.

About this article

Cite this article

Kamomae, T., Miyabe, Y., Sawada, A. et al. Simulation for improvement of system sensitivity of radiochromic film dosimetry with different band-pass filters and scanner light intensities. Radiol Phys Technol 4, 140–147 (2011). https://doi.org/10.1007/s12194-011-0113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-011-0113-6

Keywords

Navigation