Skip to main content
Log in

Water-equivalent pathlength reproducibility due to respiratory pattern variation in charged-particle pancreatic radiotherapy

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

We evaluated the water-equivalent length (WEL) reproducibility due to variation in the external respiratory marker position when using a 4DCT scan in respiratory-gated charged-particle treatment. Two sets of pancreatic 4DCT data from two patients were acquired under free breathing conditions with 256-slice CT. The 4DCT data included two exhalation phases and the respiratory patterns in each patient differed, one being regular and the other irregular. The WEL calculation region is defined in the first respiratory cycle by two planes, one at the patient entrance surface and the other behind the target in the anterior–posterior (AP) and posterior–anterior (PA) directions. In the regular respiratory pattern, the WEL variation within the target region was less than 1.7 mm between the first and second exhalations in both AP and PA calculation directions. However, in the irregular breathing pattern, the respiratory amplitude at the second exhalation was 20% lower than that at the first exhalation; therefore, WEL variations from 8.1 to −9.1 mm and from 3.1 to −3.4 mm were observed within the target region in the AP and PA calculation directions, respectively. The WEL variation in the PA direction was smaller than that in the AP direction because the abdominal thickness is affected more in the AP direction. Respiratory pattern variation even affects WEL values in the respiratory-gated phase. This variation should be considered in treatment planning, and necessary improvements in respiratory reproducibility should be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mori S, Wolfgang J, Lu H, Schneider R, Choi NC, Chen GT. Quantitative assessment of range fluctuations in charged particle lung irradiation. Int J Radiat Oncol Biol Phys. 2008;70:253–61.

    Article  PubMed  Google Scholar 

  2. Mori S, Chen GT, Endo M. Effects of intrafractional motion on water equivalent pathlength in respiratory-gated heavy charged particle beam radiotherapy. Int J Radiat Oncol Biol Phys. 2007;69(1):308–17.

    Article  PubMed  Google Scholar 

  3. Minohara S, Kanai T, Endo M, Noda K, Kanazawa M. Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47(4):1097–103.

    Article  CAS  PubMed  Google Scholar 

  4. Ohara K, Okumura T, Akisada M, Inada T, Mori T, Yokota H, et al. Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys. 1989;17(4):853–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kato H, Tsujii H, Miyamoto T, Mizoe JE, Kamada T, Tsuji H, et al. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys. 2004;59(5):1468–76.

    Article  PubMed  Google Scholar 

  6. Shea SA, Guz A. Personnalite ventilatoire—an overview. Respir Physiol. 1992;87(3):275–91.

    Article  CAS  PubMed  Google Scholar 

  7. Benchetrit G. Breathing pattern in humans: diversity and individuality. Respir Physiol. 2000;122(2–3):123–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mageras GS, Yorke E, Rosenzweig K, Braban L, Keatley E, Ford E, et al. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys. 2001;2(4):191–200.

    Article  CAS  PubMed  Google Scholar 

  9. Berbeco RI, Jiang SB, Sharp GC, Chen GT, Mostafavi H, Shirato H. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors. Phys Med Biol. 2004;49(2):243–55.

    Article  PubMed  Google Scholar 

  10. Tsunashima Y, Sakae T, Shioyama Y, Kagei K, Terunuma T, Nohtomi A, et al. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(3):951–8.

    Article  PubMed  Google Scholar 

  11. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.

    Article  PubMed  Google Scholar 

  12. Endo M, Mori S, Kandatsu S, Tanada S, Kondo C. Development and performance evaluation of the second model 256-detector row CT. Radiol Phys Technol. 2008;1:20–6.

    Article  PubMed  Google Scholar 

  13. Endo M, Mori S, Tsunoo T, Kandatsu S, Tanada S, Aradate H, et al. Development and performance evaluation of the first model of 4D CT-scanner. IEEE Trans Nucl Sci. 2003;50:1667–71.

    Article  Google Scholar 

  14. Mori S, Endo M, Tsunoo T, Kandatsu S, Tanada S, Aradate H, et al. Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging. Med Phys. 2004;31(6):1348–56.

    Article  PubMed  Google Scholar 

  15. Ford EC, Mageras GS, Yorke E, Rosenzweig KE, Wagman R, Ling CC. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2002;52(2):522–31.

    Article  CAS  PubMed  Google Scholar 

  16. Giraud P, Yorke E, Ford EC, Wagman R, Mageras GS, Amols H, et al. Reduction of organ motion in lung tumors with respiratory gating. Lung Cancer. 2006;51(1):41–51.

    Article  PubMed  Google Scholar 

  17. Parker DL. Optimal short scan convolution reconstruction for fan beam CT. Med Phys. 1982;9(2):254–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kanematsu N, Matsufuji N, Kohno R, Minohara S, Kanai T. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys Med Biol. 2003;48(8):1053–64.

    Article  PubMed  Google Scholar 

  19. Kubo HD, Wang L. Introduction of audio gating to further reduce organ motion in breathing synchronized radiotherapy. Med Phys. 2002;29(3):345–50.

    Article  PubMed  Google Scholar 

  20. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R. Patient training in respiratory-gated radiotherapy. Med Dosim. 2003;28(1):7–11.

    Article  PubMed  Google Scholar 

  21. George R, Keall PJ, Kini VR, Vedam SS, Siebers JV, Wu Q, et al. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003;30(4):552–62.

    Article  CAS  PubMed  Google Scholar 

  22. Furukawa T, Inaniwa T, Sato S, Tomitani T, Minohara S, Noda K, et al. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy. Med Phys. 2007;34(3):1085–97.

    Article  CAS  PubMed  Google Scholar 

  23. Noda K, Furukawa T, Fujisawa T, Iwata Y, Kanai T, Kanazawa M, et al. New accelerator facility for carbon-ion cancer-therapy. J Radiat Res (Tokyo). 2007;48(Suppl A):A43–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Mori.

About this article

Cite this article

Kumagai, M., Mori, S., Hara, R. et al. Water-equivalent pathlength reproducibility due to respiratory pattern variation in charged-particle pancreatic radiotherapy. Radiol Phys Technol 2, 112–118 (2009). https://doi.org/10.1007/s12194-008-0052-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-008-0052-z

Keywords

Navigation