Skip to main content
Log in

Ameliorative effects of Bifidobacterium longum peptide-1 on benzo(α)pyrene induced oxidative damages via daf-16 in Caenorhabditis elegans

  • Original Article
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Oxidative stress is implicated in numerous diseases, with benzo(α)pyrene (BaP) known for causing substantial oxidative damage. Bifidobacterium longum (B. longum) is recognized as an antioxidant bacterium for certain hosts, yet its influence on oxidative damages instigated by BaP remains undetermined. In our study, we introduced various strains of Caenorhabditis elegans (C. elegans) to BaP to trigger oxidative stress, subsequently treating them with different forms of B. longum to evaluate its protective effects. Additionally, we explored the role of daf-16 in this context. Our findings indicated that in wild-type N2 C. elegans, B. longum—even in the form of inactivated bacteria or bacterial ultrasonic lysates (BULs)—significantly extended lifespan. BaP exposure notably decreased lifespan, superoxide dismutase (SOD) activity, and motility, while simultaneously down-regulating the expression of reactive oxygen species (ROS)-associated genes (sod-3, sek-1, cat-1) and daf-16 downstream genes (sod-3, ctl-2). However, it significantly increased the ROS level, malondialdehyde (MDA) content, and lipofuscin accumulation and up-regulated another daf-16 downstream gene (clk-1) (P <0.05). Interestingly, when further treated with B. longum peptide-1 (BLP-1), opposite effects were observed, and all the aforementioned indices changed significantly. In the case of RNAi (daf-16) C. elegans, BaP exposure significantly shortened the lifespan (P <0.05), which was only slightly prolonged upon further treatment with BLP-1. Furthermore, the expression of daf-16 downstream genes showed minor alterations in RNAi C. elegans upon treatment with either BaP or BLP-1. In conclusion, our findings suggest that B. longum acts as a probiotic for C. elegans. BLP-1 was shown to safeguard C. elegans from numerous oxidative damages induced by BaP, but these protective effects were contingent upon the daf-16 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable

References

Download references

Acknowledgements

We thank Professor JiuYao Wang (from the Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, China) for supplying the bacteria and the technical assistance.

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Li.

Ethics declarations

Ethics approval and consent to participate

The study protocol was approved by the ethics committee of the Affiliated Hospital of Southwest Medical University.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Figure S1 (PNG 44 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, L., Luo, D., Wang, H. et al. Ameliorative effects of Bifidobacterium longum peptide-1 on benzo(α)pyrene induced oxidative damages via daf-16 in Caenorhabditis elegans. Cell Stress and Chaperones 28, 909–920 (2023). https://doi.org/10.1007/s12192-023-01385-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-023-01385-2

Keywords

Navigation