Skip to main content

Advertisement

Log in

Purification and biochemical characterization of Msi3, an essential Hsp110 molecular chaperone in Candida albicans

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Hsp110s are unique and essential molecular chaperones in the eukaryotic cytosol. They play important roles in maintaining cellular protein homeostasis. Candida albicans is the most prevalent yeast opportunistic pathogen that causes fungal infections in humans. As the only Hsp110 in Candida albicans, Msi3 is essential for the growth and infection of Candida albicans. In this study, we have expressed and purified Msi3 in nucleotide-free state and carried out biochemical analyses. Sse1 is the major Hsp110 in budding yeast S. cerevisiae and the best characterized Hsp110. Msi3 can substitute Sse1 in complementing the temperature-sensitive phenotype of S. cerevisiae carrying a deletion of SSE1 gene although Msi3 shares only 63.4% sequence identity with Sse1. Consistent with this functional similarity, the purified Msi3 protein shares many similar biochemical activities with Sse1 including binding ATP with high affinity, changing conformation upon ATP binding, stimulating the nucleotide-exchange for Hsp70, preventing protein aggregation, and assisting Hsp70 in refolding denatured luciferase. These biochemical characterizations suggested that Msi3 can be used as a model for studying the molecular mechanisms of Hsp110s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albanese V, Yam AY, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88

    Article  CAS  PubMed  Google Scholar 

  • Andreasson C, Fiaux J, Rampelt H, Druffel-Augustin S, Bukau B (2008a) Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc Natl Acad Sci U S A 105:16519–16524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasson C, Fiaux J, Rampelt H, Mayer MP, Bukau B (2008b) Hsp110 is a nucleotide-activated exchange factor for Hsp70. J Biol Chem 283:8877–8884

    Article  CAS  PubMed  Google Scholar 

  • Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  PubMed  CAS  Google Scholar 

  • Berman J, Krysan DJ (2020) Drug resistance and tolerance in fungi. Nat Rev Microbiol 18:319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracher A, Verghese J (2015) The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    Article  CAS  PubMed  Google Scholar 

  • Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335

    Article  CAS  PubMed  Google Scholar 

  • Cho T, Toyoda M, Sudoh M, Nakashima Y, Calderone RA, Kaminishi H (2003) Isolation and sequencing of the Candida albicans MSI3, a putative novel member of the HSP70 family. Yeast 20:149–156

    Article  CAS  PubMed  Google Scholar 

  • Costa-de-Oliveira S, Rodrigues AG (2020) Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 8

  • Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K (2018) Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update. Microb Pathog 117:128–138

    Article  CAS  PubMed  Google Scholar 

  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU (2006) Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 25:2519–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5:276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Q, Park KW, Du Z, Morano KA, Li L (2007) The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion. Genetics 177:1583–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez MR, Valpuesta JM (2018) Hsp70 chaperone: a master player in protein homeostasis. F1000Res 7

  • Fung KL, Hilgenberg L, Wang NM, Chirico WJ (1996) Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. J Biol Chem 271:21559–21565

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Carroni M, Nussbaum-Krammer C, Mogk A, Nillegoda NB, Szlachcic A, Guilbride DL, Saibil HR, Mayer MP, Bukau B (2015) Human Hsp70 Disaggregase Reverses Parkinson's-Linked alpha-Synuclein Amyloid Fibrils. Mol Cell 59:781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia VM, Nillegoda NB, Bukau B, Morano KA (2017) Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Mol Biol Cell 28:2066–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeckeler JL, Stephens A, Lee P, Caplan AJ, Brodsky JL (2002) Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell 13:2760–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeckeler JL, Petruso AP, Aguirre J, Clement CC, Chiosis G, Brodsky JL (2008) The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett 582:2393–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozzi GJ, Gonzalez D, Boudesco C, Dias AMM, Gotthard G, Uyanik B, Dondaine L, Marcion G, Hermetet F, Denis C, Hardy L, Suzanne P, Douhard R, Jego G, Dubrez L, Demidov ON, Neiers F, Briand L, Sopková-de Oliveira Santos J, Voisin-Chiret AS, Garrido C (2020) Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death Differ 27:117–129

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson WA, Liu Q (2008) Exchange we can believe in. Structure 16:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Hrizo SL, Gusarova V, Habiel DM, Goeckeler JL, Fisher EA, Brodsky JL (2007) The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 282:32665–32675

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy G, Andreasson C (2018) Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast. J Cell Sci 131

  • Kirkpatrick CH (1994) Chronic mucocutaneous candidiasis. J Am Acad Dermatol 31:S14–S17

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Peter JJ, Sagar A, Ray A, Jha MP, Rebeaud ME, Tiwari S, Goloubinoff P, Ashish F, Mapa K (2020) Interdomain communication suppressing high intrinsic ATPase activity of Sse1 is essential for its co-disaggregase activity with Ssa1. FEBS J 287:671–694

    Article  CAS  PubMed  Google Scholar 

  • Lee-Yoon D, Easton D, Murawski M, Burd R, Subjeck JR (1995) Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem 270:15725–15733

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Morano KA, Thiele DJ (1999) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274:26654–26660

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liang C, Zhou L (2020) Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 29:378–390

    Article  CAS  PubMed  Google Scholar 

  • Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19–31

    Article  CAS  PubMed  Google Scholar 

  • Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA (2010) Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol Biol Cell 21:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 288:21399–21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Gierasch LM (2019) Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 294:2085–2097

    Article  CAS  PubMed  Google Scholar 

  • Moran C, Kinsella GK, Zhang ZR, Perrett S, Jones GW (2013) Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo. G3 (Bethesda) 3:1409–1418

    Article  CAS  Google Scholar 

  • Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865–876

    Article  CAS  PubMed  Google Scholar 

  • Mukai H, Kuno T, Tanaka H, Hirata D, Miyakawa T, Tanaka C (1993) Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family. Gene 132:57–66

    Article  CAS  PubMed  Google Scholar 

  • Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310

    Article  PubMed  CAS  Google Scholar 

  • Nagao J, Cho T, Uno J, Ueno K, Imayoshi R, Nakayama H, Chibana H, Kaminishi H (2012) Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance. FEMS Yeast Res 12:728–737

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (1987) Candida infections: an overview. Crit Rev Microbiol 15:1–5

    Article  CAS  PubMed  Google Scholar 

  • O'Driscoll J, Clare D, Saibil H (2015) Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery. J Cell Biol 211:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh HJ, Chen X, Subjeck JR (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 272:31636–31640

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR (1999) The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem 274:15712–15718

    Article  CAS  PubMed  Google Scholar 

  • Pobre KFR, Poet GJ, Hendershot LM (2019) The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 294:2098–2108

    Article  CAS  PubMed  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  CAS  PubMed  Google Scholar 

  • Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31:4221–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindran MS, Bagchi P, Inoue T, Tsai B (2015) A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathog 11:e1005086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raviol H, Bukau B, Mayer MP (2006a) Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Lett 580:168–174

    Article  CAS  PubMed  Google Scholar 

  • Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B (2006b) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 25:2510–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andreasson C, Lindquist S, Bukau B (2008) Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 3:e1763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salazar SB, Simoes RS, Pedro NA, Pinheiro MJ, Carvalho M, Mira NP (2020) An Overview on Conventional and Non-Conventional Therapeutic Approaches for the Treatment of Candidiasis and Underlying Resistance Mechanisms in Clinical Strains. J Fungi (Basel) 6

  • Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaner L, Trott A, Goeckeler JL, Brodsky JL, Morano KA (2004) The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J Biol Chem 279:21992–22001

    Article  CAS  PubMed  Google Scholar 

  • Shaner L, Wegele H, Buchner J, Morano KA (2005) The yeast Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb. J Biol Chem 280:41262–41269

    Article  CAS  PubMed  Google Scholar 

  • Shaner L, Sousa R, Morano KA (2006) Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45:15075–15084

    Article  CAS  PubMed  Google Scholar 

  • Sherrington SL, Kumwenda P, Kousser C, Hall RA (2018) Host Sensing by Pathogenic Fungi. Adv Appl Microbiol 102:159–221

    Article  CAS  PubMed  Google Scholar 

  • Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 6:e26319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrente MP, Shorter J (2013) The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins. Prion 7:457–463

    Article  CAS  PubMed  Google Scholar 

  • Trott A, Shaner L, Morano KA (2005) The molecular chaperone Sse1 and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae. Genetics 170:1009–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegele H, Haslbeck M, Buchner J (2003) Recombinant expression and purification of Ssa1p (Hsp70) from Saccharomyces cerevisiae using Pichia pastoris. J Chromatogr B Anal Technol Biomed Life Sci 786:109–115

    Article  CAS  Google Scholar 

  • Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q (2012) The unique peptide substrate binding properties of 110 KDA heatshock protein (HSP110) determines its distinct chaperone activity. J Biol Chem 287:5661–5672

    Article  CAS  PubMed  Google Scholar 

  • Yakubu UM, Morano KA (2018) Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding. Biol Chem 399:1215–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yam AY, Albanese V, Lin HT, Frydman J (2005) Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem 280:41252–41261

    Article  CAS  PubMed  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ronda J. Rolfes (Department of Biology, Georgetown University) for providing the genomic DNA of C. albicans. We thank Ms. Baoxiu Zhang for technical support and Mr. Liqing Hu and Justin Kidd for discussion.

Funding

This work was supported by NIH (R01GM098592 and R21AI140006 to Q.L.), and VETAR Award from VCU (to Q.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglian Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, H., Sun, C. et al. Purification and biochemical characterization of Msi3, an essential Hsp110 molecular chaperone in Candida albicans. Cell Stress and Chaperones 26, 695–704 (2021). https://doi.org/10.1007/s12192-021-01213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-021-01213-5

Keywords

Navigation