Skip to main content
Log in

Control of stress-induced apoptosis by freezing tolerance-associated wheat proteins during cryopreservation of rat hepatocytes

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Cryopreservation is used for long-term storage of cells and tissues. Cryoprotectants such as dimethyl disulfoxide (DMSO) are used to protect cells against freeze-thaw damage. Despite the use of cryoprotectants, hepatocytes are sensitive to stresses imposed by freeze and thaw processes, which cause physical damage, loss of functionality, or cell death. As an alternative, we have developed new technology using several recombinant wheat proteins as cryoprotectants: TaENO (enolase), TaBAS1 (2-Cys peroxiredoxin), and a combination of WCS120 (dehydrin) with TaIRI-2 (inhibitor of ice recrystallization). This study aims to understand the mechanisms by which these plant proteins protect rat hepatocytes against cell death incurred during cryopreservation. Our analysis revealed that for cells cryopreserved with DMSO, cell death occurred by apoptosis and necrosis. Apoptosis was detected by activation of effector caspases-3 and -7, PARP cleavage, and nuclear chromatin condensation. These apoptotic events were inhibited when hepatocytes were cryopreserved with the different plant proteins. Cryopreservation with DMSO activated apoptosis through the mitochondrial pathway: the Bax/Bcl-2 protein ratio increased, mitochondrial membrane potential decreased, and initiator caspase-9 was activated. Furthermore, the endoplasmic reticulum pathway of apoptosis was activated: levels of the chaperone Bip/GRP78 decreased, pro-apoptotic transcription factor CHOP was induced, and initiator caspase-12 was activated. Activation of the mitochondrial and endoplasmic reticulum pathways of apoptosis was attenuated when hepatocytes were cryopreserved with the different recombinant proteins. This study improves understanding of mechanisms of cryoprotection provided by these plant proteins during freezing stress. These proteins are natural products and show promising potential by decreasing cell death during cryopreservation of hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgments

The authors thank Denis Flipo (MSc) for technical assistance with flow cytometry experiments.

Funding

Financial support was obtained from the Natural Sciences and Engineering Council of Canada (NSERC) (#36725-16: DAB) and The Fonds de Recherche du Québec—Nature et Technologies (FRQNT) (DAB, FO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana A. Averill-Bates.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow-shi-yée, M., Grondin, M., Ouellet, F. et al. Control of stress-induced apoptosis by freezing tolerance-associated wheat proteins during cryopreservation of rat hepatocytes. Cell Stress and Chaperones 25, 869–886 (2020). https://doi.org/10.1007/s12192-020-01115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01115-y

Keywords

Navigation