Skip to main content
Log in

Structural and functional properties of proteins interacting with small heat shock proteins

  • PERSPECTIVES ON sHSPs
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones found in all domains of life, possessing significant roles in protein quality control in cells and assisting the refolding of non-native proteins. They are efficient chaperones against many in vitro protein substrates. Nevertheless, the in vivo native substrates of sHsps are not known. To better understand the functions of sHsps and the mechanisms by which they enhance heat resistance, sHsp-interacting proteins were identified using affinity purification under heat shock conditions. This paper aims at providing some insights into the characteristics of natural substrate proteins of sHsps. It seems that sHsps of prokaryotes, as well as sHsps of some eukaryotes, can bind to a wide range of substrate proteins with a preference for certain functional classes of proteins. Using Drosophila melanogaster mitochondrial Hsp22 as a model system, we observed that this sHsp interacted with the members of ATP synthase machinery. Mechanistically, Hsp22 interacts with the multi-type substrate proteins under heat shock conditions as well as non-heat shock conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida-Souza L, Asselbergh B, d'Ydewalle C, Moonens K, Goethals S, de Winter V, Azmi A, Irobi J, Timmermans JP, Gevaert K, Remaut H, van den Bosch L, Timmerman V, Janssens S (2011) Small heat-shock protein HSPB1 mutants stabilize microtubules in Charcot-Marie-Tooth neuropathy. J Neurosci 31(43):15320–15328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barja G (2014) The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci 127:1–27

    CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR, Giese KC, Vierling E (2004a) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279(9):7566–7575

    CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004b) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271(8):1426–1436

    CAS  PubMed  Google Scholar 

  • Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117

    CAS  PubMed  Google Scholar 

  • Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M, Haslbeck M, Buchner J (2012) Alternative bacterial two-component small heat shock protein systems. Proc Natl Acad Sci U S A 109(50):20407–20412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537

    CAS  PubMed  Google Scholar 

  • Carra S et al (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond Ser B Biol Sci 368(1617):20110409

    Google Scholar 

  • Carver JA, Lindner RA, Lyon C, Canet D, Hernandez H, Dobson CM, Redfield C (2002) The interaction of the molecular chaperone alpha-crystallin with unfolding alpha-lactalbumin: a structural and kinetic spectroscopic study. J Mol Biol 318(3):815–827

    CAS  PubMed  Google Scholar 

  • Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280(25):23869–23875

    CAS  PubMed  Google Scholar 

  • Dabbaghizadeh, Morrow G, Amer YO, Chatelain EH, Pichaud N, Tanguay RM (2018) Identification of proteins interacting with the mitochondrial small heat shock protein hsp22 of Drosophila melanogaster: implication in mitochondrial homeostasis. PLoS One 13:e0193771

    PubMed  PubMed Central  Google Scholar 

  • Danan IJ, Rashed ER, Depre C (2007) Therapeutic potential of H11 kinase for the ischemic heart. Cardiovasc Drug Rev 25(1):14–29

    CAS  PubMed  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587(8):1073–1080

    CAS  PubMed  Google Scholar 

  • Depre C, Wang L, Tomlinson JE, Gaussin V, Abdellatif M, Topper JN, Vatner SF (2003) Characterization of pDJA1, a cardiac-specific chaperone found by genomic profiling of the post-ischemic swine heart. Cardiovasc Res 58(1):126–135

    CAS  PubMed  Google Scholar 

  • Ehrnsperger M et al (1998) Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 259(2):218–225

    CAS  PubMed  Google Scholar 

  • Favet N, Duverger O, Loones MT, Poliard A, Kellermann O, Morange M (2001) Overexpression of murine small heat shock protein HSP25 interferes with chondrocyte differentiation and decreases cell adhesion. Cell Death and Differ 8(6):603–613

  • Fleckenstein T et al (2015) The chaperone activity of the developmental small heat shock protein Sip1 is regulated by pH-dependent conformational changes. Mol Cell 58(6):1067–1078

    CAS  PubMed  Google Scholar 

  • Friedrich KL, Giese KC, Buan NR, Vierling E (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279(2):1080–1089

    CAS  PubMed  Google Scholar 

  • Fu X et al (2003) Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun 310(2):412–420

    CAS  PubMed  Google Scholar 

  • Fu W et al (2013a) Apoptosis of osteosarcoma cultures by the combination of the cyclin-dependent kinase inhibitor SCH727965 and a heat shock protein 90 inhibitor. Cell Death Dis 4:e566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2013b) In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker. J Biol Chem 288(44):31646–31654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2013c) Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues. J Biol Chem 288(17):11897–11906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Chang Z, Shi X, Bu D, Wang C (2014) Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Sci 23(2):229–237

    CAS  PubMed  Google Scholar 

  • Fuchs M et al (2010) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425(1):245–255

    CAS  Google Scholar 

  • Fuchs M et al (2015) A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis. PLoS Genet 11(10):e1005582

    PubMed  PubMed Central  Google Scholar 

  • Genova ML, Lenaz G (2015) The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Signal 23(3):208–238

    CAS  PubMed  Google Scholar 

  • Goenka S et al (2001) Unfolding and refolding of a quinone oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation. Biochem J 359(Pt 3):547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol 277(1):27–35

    CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Sajbil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18(23):6744–6751

  • Herrmann JM et al (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol 127(4):893–902

    CAS  PubMed  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89(21):10449–10453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X et al (2015) Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). J Proteome 115:81–92

    CAS  Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Van Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36(6):597–601

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    CAS  PubMed  Google Scholar 

  • Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci U S A 106(37):15604–15609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayumov AR et al (2017) Recombinant small heat shock protein from Acholeplasma laidlawii increases the Escherichia coli viability in thermal stress by selective protein rescue. Mol Biol (Mosk) 51(1):131–141

    CAS  Google Scholar 

  • Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY, Chi SG, Yoon YS, Yoon G, Ko YG (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6(8):2444–2453

    CAS  PubMed  Google Scholar 

  • Kriehuber T et al (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24(10):3633–3642

    CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GJ et al (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16(3):659–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner RA, Kapur A, Carver JA (1997) The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J Biol Chem 272(44):27722–27729

    CAS  PubMed  Google Scholar 

  • Luheshi LM, Crowther DC, Dobson CM (2008) Protein misfolding and disease: from the test tube to the organism. Curr Opin Chem Biol 12(1):25–31

    CAS  PubMed  Google Scholar 

  • Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8(11):e81207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matuszewska M, Kuczyńska-Wiśnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280(13):12292–12298

    CAS  PubMed  Google Scholar 

  • McGreal RS et al (2012) alphaB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochim Biophys Acta 1820(7):921–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGreal RS et al (2013) Chaperone-independent mitochondrial translocation and protection by alphaB-crystallin in RPE cells. Exp Eye Res 110:10–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E (2016) Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant Physiol 172(2):1221–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268(2):1046–1052

    CAS  PubMed  Google Scholar 

  • Mi H et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33(Database issue):D284–D288

    CAS  PubMed  Google Scholar 

  • Mogk A, Deuerling E, Vorderwülbecke S, Vierling E, Bukau B (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585–595

    CAS  PubMed  Google Scholar 

  • Mogk A, Bukau B, Kampinga HH (2018) Cellular handling of protein aggregates by disaggregation machines. Mol Cell 69(2):214–226

    CAS  PubMed  Google Scholar 

  • Morrow G et al (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279(42):43382–43385

    CAS  PubMed  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18(3):598–599

    CAS  PubMed  Google Scholar 

  • Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11(1):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow G et al (2016a) Changes in Drosophila mitochondrial proteins following chaperone-mediated lifespan extension confirm a role of Hsp22 in mitochondrial UPR and reveal a mitochondrial localization for cathepsin D. Mech Ageing Dev 155:36–47

    CAS  PubMed  Google Scholar 

  • Morrow G, Le Pecheur M, Tanguay RM (2016b) Drosophila melanogaster mitochondrial Hsp22: a role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response. Biogerontology 17(1):61–70

    CAS  PubMed  Google Scholar 

  • Muchowski PJ, Hays LG, Yates JR 3rd, Clark JI (1999) ATP and the core “alpha-crystallin” domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 274(42):30190–30195

    CAS  PubMed  Google Scholar 

  • Murzin AG et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Haslbeck M (2015) Medical implications of understanding the functions of human small heat shock proteins. Expert Rev Proteomics 12(3):295–308

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2016) The chaperone activity and substrate Spectrum of human small heat shock proteins. J Biol Chem 292(2):672–684

  • Nadeau SI, Landry J (2007) Mechanisms of activation and regulation of the heat shock-sensitive signaling pathways. Adv Exp Med Biol 594:100–113

    PubMed  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93 table of contents

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perng MD et al (1999) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112(Pt 13):2099–2112

    CAS  PubMed  Google Scholar 

  • Powers ET et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    CAS  PubMed  Google Scholar 

  • Qiu H, Lizano P, Laure L, Sui X, Rashed E, Park JY, Hong C, Gao S, Holle E, Morin D, Dhar SK, Wagner T, Berdeaux A, Tian B, Vatner SF, Depre C (2011) H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation 124(4):406–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajaraman K, Raman B, Ramakrishna T, Rao CM (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett 497(2–3):118–123

    CAS  PubMed  Google Scholar 

  • Raman B, Ramakrishna T, Rao CM (1995) Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett 365(2–3):133–136

    CAS  PubMed  Google Scholar 

  • Rashed E et al (2015) Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One 10(3):e0119537

    PubMed  PubMed Central  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    CAS  PubMed  Google Scholar 

  • Rutgers M et al (2017) Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii. Plant Mol Biol 95(6):579–591

    PubMed  PubMed Central  Google Scholar 

  • Salinthone S, Ba M, Hanson L, Martin JL, Halayko AJ, Gerthoffer WT (2007) Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity. Am J Physiol Lung Cell Mol Physiol 293(5):L1194–L1207

    CAS  PubMed  Google Scholar 

  • Sanbe A, Marunouchi T, Abe T, Tezuka Y, Okada M, Aoki S, Tsumura H, Yamauchi J, Tanonaka K, Nishigori H, Tanoue A (2013) Phenotype of cardiomyopathy in cardiac-specific heat shock protein B8 K141N transgenic mouse. J Biol Chem 288(13):8910–8921

  • Santhanagopalan I, Degiacomi MT, Shepherd DA, Hochberg GKA, Benesch JLP, Vierling E (2018) It takes a dimer to tango: oligomeric small heat shock proteins dissociate to capture substrate. J Biol Chem 293:19511–19521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scialo F, Mallikarjun V, Stefanatos R, Sanz A (2013) Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 19(16):1953–1969

    CAS  PubMed  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278(20):18015–18021

    CAS  PubMed  Google Scholar 

  • Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13(9):2129–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetkova NM et al (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99(21):13504–13509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11(11):777–788

    CAS  PubMed  Google Scholar 

  • Ungelenk S et al (2016) Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat Commun 7:13673

    PubMed  PubMed Central  Google Scholar 

  • Van Why SK et al (2003) Hsp27 associates with actin and limits injury in energy depleted renal epithelia. J Am Soc Nephrol 14(1):98–106

    PubMed  Google Scholar 

  • Verschuure P, Tatard C, Boelens WC, Grongnet JF, David JC (2003) Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol 82(10):523–530

    CAS  PubMed  Google Scholar 

  • Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU (2015) Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161(4):919–932

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Tanguay.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabbaghizadeh, A., Tanguay, R.M. Structural and functional properties of proteins interacting with small heat shock proteins. Cell Stress and Chaperones 25, 629–637 (2020). https://doi.org/10.1007/s12192-020-01097-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-020-01097-x

Keywords

Navigation