Skip to main content
Log in

MAPKAP kinase 2–mediated phosphorylation of HspA1L protects male germ cells from heat stress–induced apoptosis

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Developing male germ cells are extremely sensitive to heat stress; consequently, anatomic and physiologic adaptations have evolved to maintain proper thermoregulation during mammalian spermatogenesis. At the cellular level, increased expression and activity of HSP70 family members occur in response to heat stress in order to refold partially denatured proteins and restore function. In addition, several kinase-mediated signaling pathways are activated in the testis upon hyperthermia. The p38 MAP kinase (MAPK) pathway plays an important role in mitigating heat stress, and recent findings have implicated the downstream p38 substrate, MAPKAP kinase 2 (MK2), in this process. However, the precise function that this kinase plays in spermatogenesis is not completely understood. Using a proteomics-based screen, we identified and subsequently validated that the testis-enriched HSP70 family member, HspA1L, is a novel substrate of MK2. We demonstrate that MK2 phosphorylates HspA1L solely on Ser241, a residue within the N-terminal nucleotide-binding domain of the enzyme. This phosphorylation event enhances the chaperone activity of HspA1L in vitro and renders male germ cells more resistant to heat stress–induced apoptosis. Taken together, these findings illustrate a novel stress-induced signaling cascade that promotes the chaperone activity of HspA1L with implications for understanding male reproductive biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almog T, Naor Z (2008) Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol Cell Endocrinol 282(1–2):39–44

    CAS  PubMed  Google Scholar 

  • Atarod S, Turner B, Pearce KF, Ahmed SS, Norden J, Bogunia-Kubik K, Wang XN, Collin M, Dickinson AM (2015) Elevated level of HSPA1L mRNA correlates with graft-versus-host disease. Transpl Immunol 32(3):188–194

    CAS  PubMed  Google Scholar 

  • Baum JS, George JPS, McCall K (2005) Programmed cell death in the germline. Semin Cell Dev Biol 16(2):245–259

    CAS  PubMed  Google Scholar 

  • Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P (1995) Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 14(23):5920–5930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581(19):3702–3710

    CAS  PubMed  Google Scholar 

  • Dix DJ (1997) Hsp70 expression and function during gametogenesis. Cell Stress Chaperones 2(2):73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM (1996) Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A 93(8):3264–3268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM (1997) HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 124(22):4595–4603

    CAS  PubMed  Google Scholar 

  • Doshi BM, Hightower LE, Lee J (2009) The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock. Cell Stress Chaperones 14(5):445–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dun MD, Aitken RJ, Nixon B (2012) The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 18(4):420–435

    PubMed  Google Scholar 

  • Eddy EM (1999) Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod 4(1):23–30

    CAS  PubMed  Google Scholar 

  • Engel K, Ahlers A, Brach MA, Herrmann F, Gaestel M (1995) MAPKAP kinase 2 is activated by heat shock and TNF-alpha: in vivo phosphorylation of small heat shock protein results from stimulation of the MAP kinase cascade. J Cell Biochem 57(2):321–330

    CAS  PubMed  Google Scholar 

  • Erbse A, Mayer MP, Bukau B (2004) Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans 32(Pt 4):617–621

    CAS  PubMed  Google Scholar 

  • Ewen K, Jackson A, Wilhelm D, Koopman P (2010) A male-specific role for p38 mitogen-activated protein kinase in germ cell sex differentiation in mice. Biol Reprod 83(6):1005–1014

    CAS  PubMed  Google Scholar 

  • Fan W, Gao XK, Rao XS, Shi YP, Liu XC, Wang FY, Liu YF, Cong XX, He MY, Xu SB, Shen WL, Shen Y, Yan SG, Luo Y, Low BC, Ouyang H, Bao Z, Zheng LL, Zhou YT (2018) Hsp70 interacts with mitogen-activated protein kinase (MAPK)-activated protein kinase 2 to regulate p38MAPK stability and myoblast differentiation during skeletal muscle regeneration. Mol Cell Biol 38(24)

  • Feng HL, Sandlow JI, Sparks AE (2001) Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril 76(6):1136–1139

    CAS  PubMed  Google Scholar 

  • Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78(6):1039–1049

    CAS  PubMed  Google Scholar 

  • Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ (2013) High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy. Nature 504(7479):291–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huusko JM, Karjalainen MK, Graham BE, Zhang G, Farrow EG, Miller NA, Jacobsson B, Eidem HR, Murray JC, Bedell B, Breheny P, Brown NW, Bodker FL, Litterman NK, Jiang PP, Russell L, Hinds DA, Hu Y, 23andMe Research, Rokas A, Teramo K, Christensen K, Williams SM, Ramet M, Kingsmore SF, Ryckman KK, Hallman M, Muglia LJ (2018) Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet 14(7):e1007394

    PubMed  PubMed Central  Google Scholar 

  • Ito Y, Ando A, Ando H, Ando J, Saijoh Y, Inoko H, Fujimoto H (1998) Genomic structure of the spermatid-specific hsp70 homolog gene located in the class III region of the major histocompatibility complex of mouse and man. J Biochem 124(2):347–353

    CAS  PubMed  Google Scholar 

  • Kato K, Ito H, Iwamoto I, Lida K, Inaguma Y (2001) Protein kinase inhibitors can suppress stress-induced dissociation of Hsp27. Cell Stress Chaperones 6(1):16–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274(14):9378–9385

    CAS  PubMed  Google Scholar 

  • Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12(3):743–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Han YS, Yoon YM, Yun CW, Yun SP, Kim SM, Kwon HY, Jeong D, Baek MJ, Lee HJ, Lee SJ, Han HJ, Lee SH (2017) Role of HSPA1L as a cellular prion protein stabilizer in tumor progression via HIF-1alpha/GP78 axis. Oncogene 36(47):6555–6567

    CAS  PubMed  Google Scholar 

  • Lima SB, Cenedeze MA, Bertolla RP, Filho PA, Oehninger S, Cedenho AP (2006) Expression of the HSPA2 gene in ejaculated spermatozoa from adolescents with and without varicocele. Fertil Steril 86(6):1659–1663

    CAS  PubMed  Google Scholar 

  • Lizama C, Lagos CF, Lagos-Cabre R, Cantuarias L, Rivera F, Huenchunir P, Perez-Acle T, Carrion F, Moreno RD (2009) Calpain inhibitors prevent p38 MAPK activation and germ cell apoptosis after heat stress in pubertal rat testes. J Cell Physiol 221(2):296–305

    CAS  PubMed  Google Scholar 

  • Lu Z, Cyr DM (1998) Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273(43):27824–27830

    CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naaby-Hansen S, Herr JC (2010) Heat shock proteins on the human sperm surface. J Reprod Immunol 84(1):32–40

    CAS  PubMed  Google Scholar 

  • Niederberger C, Agulnik AI, Cho Y, Lamb D, Bishop CE (1997) In situ hybridization shows that Dazla expression in mouse testis is restricted to premeiotic stages IV-VI of spermatogenesis. Mamm Genome 8(4):277–278

    CAS  PubMed  Google Scholar 

  • Nixon B, Bromfield EG, Dun MD, Redgrove KA, McLaughlin EA, Aitken RJ (2015) The role of the molecular chaperone heat shock protein A2 (HSPA2) in regulating human sperm-egg recognition. Asian J Androl 17(4):568–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Murray AA, Spears N, Saunders PT (2008) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136(1):73–84

    CAS  PubMed  Google Scholar 

  • Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21(3):379–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajapandi T, Wu C, Eisenberg E, Greene L (1998) Characterization of D10S and K71E mutants of human cytosolic hsp70. Biochemistry 37(20):7244–7250

    CAS  PubMed  Google Scholar 

  • Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18(3):345–351

    CAS  PubMed  Google Scholar 

  • Scieglinska D, Krawczyk Z (2015) Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones 20(2):221–235

    CAS  PubMed  Google Scholar 

  • Son WY, Han CT, Hwang SH, Lee JH, Kim S, Kim YC (2000) Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil Steril 73(6):1138–1144

    CAS  PubMed  Google Scholar 

  • Stokoe D, Caudwell B, Cohen PT, Cohen P (1993) The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2. Biochem J 296(Pt 3):843–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Andreoletti G, Chen R, Munehira Y, Batra A, Afzal NA, Beattie RM, Bernstein JA, Ennis S, Snyder M (2017) De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease. Genome Med 9(1):8

    PubMed  PubMed Central  Google Scholar 

  • Tsunekawa N, Matsumoto M, Tone S, Nishida T, Fujimoto H (1999) The Hsp70 homolog gene, Hsc70t, is expressed under translational control during mouse spermiogenesis. Mol Reprod Dev 52(4):383–391

    CAS  PubMed  Google Scholar 

  • Vydra N, Malusecka E, Jarzab M, Lisowska K, Glowala-Kosinska M, Benedyk K, Widlak P, Krawczyk Z, Widlak W (2006) Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell Death Differ 13(2):212–222

    CAS  PubMed  Google Scholar 

  • Williams PA, Krug MS, McMillan EA, Peake JD, Davis TL, Cocklin S, Strochlic TI (2016) Phosphorylation of the RNA-binding protein Dazl by MAPKAP kinase 2 regulates spermatogenesis. Mol Biol Cell 27(15):2341–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewska M, Karlberg T, Lehtio L, Johansson I, Kotenyova T, Moche M, Schuler H (2010) Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B′, and HSPA5/BiP/GRP78. PLoS One 5(1):e8625

    PubMed  PubMed Central  Google Scholar 

  • Yin Y, Hawkins KL, DeWolf WC, Morgentaler A (1997) Heat stress causes testicular germ cell apoptosis in adult mice. J Androl 18(2):159–165

    CAS  PubMed  Google Scholar 

  • Zhang M, Jiang M, Bi Y, Zhu H, Zhou Z, Sha J (2012) Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice. PLoS One 7(7):e41412

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M. Krug for the generation of MK2-knockdown GC-2spd cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd I. Strochlic.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, P.A., Kobilnyk, H.E., McMillan, E.A. et al. MAPKAP kinase 2–mediated phosphorylation of HspA1L protects male germ cells from heat stress–induced apoptosis. Cell Stress and Chaperones 24, 1127–1136 (2019). https://doi.org/10.1007/s12192-019-01035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-019-01035-6

Keywords

Navigation