The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes

Abstract

Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu. Several mechanisms have been proposed, including direct interaction with the plasma membrane or their release within extracellular vesicles (ECV). HSPB1 (Hsp27), which belongs to the small hsp family, was detected within the membrane of ECV released from stressed HepG2 cells. To further investigate this finding, we studied the interaction of HSPB1 with lipid membranes using liposomes. We found that HSPB1 interacted with liposomes made of palmitoyl oleoyl phosphatidylserine (POPS), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl oleoyl phosphatidylglycerol (POPG), with different characteristics. Another member of the small hsp family, HSPB5 (αB-crystallin), has also been detected within ECV released from HeLa cells transfected with this gene. This protein was found to interact with liposomes as well, but differently than HSPB1. To address the regions interacting with the membrane, proteoliposomes were digested with proteinase K and the protected domains within the liposomes were identified by mass spectroscopy. We observed that large parts of HSPB1 and HSPB5 were embedded within the liposomes, particularly the alpha-crystallin domain. These observations suggest that the interaction with lipid membranes may be part of the mechanisms of export of these proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao Ch M (2008) Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins alphaA- and alphaB-crystallin. J Mol Biol 382:812–824

    Article  CAS  PubMed  Google Scholar 

  2. Almeida-Souza L, Goethals S, de Winter V, Dierick I, Gallardo R, van Durme J, Irobi J, Gettemans J, Rousseau F, Schymkowitz J, Timmerman V, Janssens S (2010) Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem 285:12778–12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843

    Article  CAS  PubMed  Google Scholar 

  4. Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arispe N, Rojas E, Genge BR, Wu LN, Wuthier RE (1996) Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers. Biophys J 71:1764–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arispe N, Doh M, De Maio A (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armijo G, Okerblom J, Cauvi DM, Lopez V, Schlamadinger DE, Kim J, Arispe N, De Maio A (2014) Interaction of heat shock protein 70 with membranes depends on the lipid environment. Cell Stress Chaperones 19:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arrigo AP (2017) Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 22:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Augusteyn RC (2004) Alpha-crystallin: a review of its structure and function. Clin Exp Optom 87:356–366

    Article  PubMed  Google Scholar 

  10. Balogi Z, Multhoff G, Jensen TK, Lloyd-Evans E, Yamashima T, Jaattela M, Harwood JL, Vigh L (2019) Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Prog Lipid Res 74:18–30

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee S, Lin CF, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG, Redmond EM, Morrow D, Huston A, Shayne M, Langstein HN, Miller-Graziano CL, Strickland J, O’Donoghue L, De AK (2011) Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res 71:318–327

    Article  CAS  PubMed  Google Scholar 

  12. Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O’Brien ER (2016) Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol 7:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boelens WC (2014) Cell biological roles of alphaB-crystallin. Prog Biophys Mol Biol 115:3–10

    Article  CAS  PubMed  Google Scholar 

  14. Boelens WC, de Jong WW (1995) Alpha-crystallins, versatile stress-proteins. Mol Biol Rep 21:75–80

    Article  CAS  PubMed  Google Scholar 

  15. Borchman D, Tang D (1996) Binding capacity of alpha-crystallin to bovine lens lipids. Exp Eye Res 63:407–410

    Article  CAS  PubMed  Google Scholar 

  16. Boyle DL, Takemoto L (1996) EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses. Curr Eye Res 15:577–582

    Article  CAS  PubMed  Google Scholar 

  17. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  CAS  PubMed  Google Scholar 

  18. Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM (2017) The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 22:601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cenedella RJ, Fleschner CR (1992) Selective association of crystallins with lens ‘native’ membrane during dynamic cataractogenesis. Curr Eye Res 11:801–815

    Article  CAS  PubMed  Google Scholar 

  20. Ciocca DR, Capello F, Cuello-Carrión FD, Arrigo A-P (2015) Molecular approaches to target heat shock proteins for cancer treatment. In: Frontiers in clinical drug research - anti-cancer agents, vol 2. Bentham Science, Sharjah, pp 120–164

    Chapter  Google Scholar 

  21. Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638

    Article  CAS  PubMed  Google Scholar 

  23. Cobb BA, Petrash JM (2000) Characterization of alpha-crystallin-plasma membrane binding. J Biol Chem 275:6664–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cobb BA, Petrash JM (2002) Alpha-crystallin chaperone-like activity and membrane binding in age-related cataracts. Biochemistry 41:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  26. De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249

    Article  CAS  PubMed  Google Scholar 

  27. De Maio A, Vazquez D (2013) Extracellular heat shock proteins: a new location, a new function. Shock 40:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. den Engelsman J, Bennink EJ, Doerwald L, Onnekink C, Wunderink L, Andley UP, Kato K, de Jong WW, Boelens WC (2004) Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271:4195–4203

    Article  CAS  Google Scholar 

  29. den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280:37139–37148

    Article  CAS  Google Scholar 

  30. Ecroyd H, Meehan S, Horwitz J, Aquilina JA, Benesch JLP, Robinson CV, Macphee CE, Carver JA (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 401:129–141

    Article  CAS  PubMed  Google Scholar 

  31. Eder KJ, Clifford MA, Hedrick RP, Kohler HR, Werner I (2008) Expression of immune-regulatory genes in juvenile Chinook salmon following exposure to pesticides and infectious hematopoietic necrosis virus (IHNV). Fish Shellfish Immunol 25:508–516

    Article  CAS  PubMed  Google Scholar 

  32. Feng JT, Liu YK, Song HY, Dal Z, Qin LX, Almofti MR, Fang CY, Lu HJ, Yang PY, Tang ZY (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5:4581–4588

    Article  CAS  PubMed  Google Scholar 

  33. Friedrich MG, Truscott RJ (2010) Large-scale binding of alpha-crystallin to cell membranes of aged normal human lenses: a phenomenon that can be induced by mild thermal stress. Invest Ophthalmol Vis Sci 51:5145–5152

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gangalum RK, Bhat SP (2009) AlphaB-crystallin: a Golgi-associated membrane protein in the developing ocular lens. Invest Ophthalmol Vis Sci 50:3283–3290

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gangalum RK, Schibler MJ, Bhat SP (2004) Small heat shock protein alphaB-crystallin is part of cell cycle-dependent Golgi reorganization. J Biol Chem 279:43374–43377

    Article  CAS  PubMed  Google Scholar 

  36. Gangalum RK, Atanasov IC, Zhou ZH, Bhat SP (2011) AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment epithelial cells. J Biol Chem 286:3261–3269

    Article  CAS  PubMed  Google Scholar 

  37. Gangalum RK, Bhat AM, Kohan SA, Bhat SP (2016) Inhibition of the expression of the small heat shock protein alphaB-crystallin inhibits exosome secretion in human retinal pigment epithelial cells in culture. J Biol Chem 291:12930–12942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

    Article  CAS  PubMed  Google Scholar 

  39. Ifeanyi F, Takemoto L (1991) Interaction of lens crystallins with lipid vesicles. Exp Eye Res 52:535–538

    Article  CAS  PubMed  Google Scholar 

  40. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  41. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  42. Kore RA, Abraham EC (2016) Phosphorylation negatively regulates exosome mediated secretion of cryAB in glioma cells. Biochim Biophys Acta 1863:368–377

    Article  CAS  PubMed  Google Scholar 

  43. Krishnamoorthy V, Donofrio AJ, Martin JL (2013) O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection. Mol Cell Biochem 379:59–68

    Article  CAS  PubMed  Google Scholar 

  44. Lopez V, Cauvi DM, Arispe N, De Maio A (2016) Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes. Cell Stress Chaperones 21:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992

    Article  CAS  PubMed  Google Scholar 

  46. Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nafar F, Williams JB, Mearow KM (2016) Astrocytes release HspB1 in response to amyloid-beta exposure in vitro. J Alzheimers Dis 49:251–263

    Article  CAS  PubMed  Google Scholar 

  48. Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24:287–308

    Article  CAS  PubMed  Google Scholar 

  49. Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rayner K, Chen YX, McNulty M, Simard T, Zhao X, Wells DJ, de Belleroche J, O’Brien ER (2008) Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-a. Circ Res 103:133–141

    Article  CAS  PubMed  Google Scholar 

  51. Rayner K, Sun J, Chen YX, McNulty M, Simard T, Zhao X, Wells DJ, de Belleroche J, O’Brien ER (2009) Heat shock protein 27 protects against atherogenesis via an estrogen-dependent mechanism: role of selective estrogen receptor beta modulation. Arterioscler Thromb Vasc Biol 29:1751–1756

    Article  CAS  PubMed  Google Scholar 

  52. Reddy VS, Yadav B, Yadav CL, Anand M, Swain DK, Kumar D, Kritania D, Madan AK, Kumar J, Yadav S (2018) Effect of sericin supplementation on heat shock protein 70 (HSP70) expression, redox status and post thaw semen quality in goat. Cryobiology 84:33–39

    Article  CAS  PubMed  Google Scholar 

  53. Rojas E, Arispe N, Haigler HT, Burns AL, Pollard HB (1992) Identification of annexins as calcium channels in biological membranes. Bone Miner 17:214–218

    Article  CAS  PubMed  Google Scholar 

  54. Roquemore EP et al (1992) Vertebrate lens alpha-crystallins are modified by O-linked N-acetylglucosamine. J Biol Chem 267:555–563

    CAS  PubMed  Google Scholar 

  55. Roquemore EP, Chevrier MR, Cotter RJ, Hart GW (1996) Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35:3578–3586

    Article  CAS  PubMed  Google Scholar 

  56. Shi C, Ulke-Lemee A, Deng J, Batulan Z, O’Brien ER (2019) Characterization of heat shock protein 27 in extracellular vesicles: a potential anti-inflammatory therapy. FASEB J 33:1617–1630

    Article  CAS  PubMed  Google Scholar 

  57. Singh MK, Sharma B, Tiwari PK (2017) The small heat shock protein Hsp27: present understanding and future prospects. J Therm Biol 69:149–154

    Article  CAS  PubMed  Google Scholar 

  58. Stope MB, Klinkmann G, Diesing K, Koensgen D, Burchardt M, Mustea A (2017) Heat shock protein HSP27 secretion by ovarian cancer cells is linked to intracellular expression levels, occurs independently of the endoplasmic reticulum pathway and HSP27’s phosphorylation status, and is mediated by exosome liberation. Dis Markers 2017:1575374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang D, Borchman D, Yappert MC, Cenedella RJ (1998) Influence of cholesterol on the interaction of alpha-crystallin with phospholipids. Exp Eye Res 66:559–567

    Article  CAS  PubMed  Google Scholar 

  60. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  Google Scholar 

  61. Tjondro HC, Xi YB, Chen XJ, Su JT, Yan YB (2016) Membrane insertion of alphaA-crystallin is oligomer-size dependent. Biochem Biophys Res Commun 473:1–7

    Article  CAS  PubMed  Google Scholar 

  62. Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vigh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99:13504–13509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  64. Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, de Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol 180:4299–4307

    Article  CAS  PubMed  Google Scholar 

  65. Vicart P, Caron A, Guicheney P, Li Z, Prévost MC, Faure A, Chateau D, Chapon F, Tomé F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95

    Article  CAS  PubMed  Google Scholar 

  66. Whittaker R, Glassy MS, Gude N, Sussman MA, Gottlieb RA, Glembotski CC (2009) Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia. Am J Physiol Heart Circ Physiol 296:H1633–H1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM (2006) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67–78

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Institutes of Health, # R01GM098455.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio De Maio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Maio, A., Cauvi, D.M., Capone, R. et al. The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes. Cell Stress and Chaperones 24, 947–956 (2019). https://doi.org/10.1007/s12192-019-01021-y

Download citation

Keywords

  • Heat shock proteins
  • Exosomes
  • Membrane
  • Phospholipids
  • Liposomes
  • Stress