Skip to main content
Log in

Role of Nkx2.5 in H2O2-induced Nsd1 suppression

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Nuclear receptor–binding SET domain–containing protein 1 (Nsd1) acts as a histone lysine methyltransferase, and its role in oxidative stress–related abnormal embryonic heart development remains poorly understood. In the present study, H2O2 decreased the expression of Nsd1 and NK2 transcription factor related locus 5 (Nkx2.5). We further focused on Nkx2.5 modulating the transcription of Nsd1 in response to H2O2. Luciferase activity analysis indicated that a regulatory region from − 646 to − 282 is essential for the basal transcriptional activity, in which, an a Nkx2.5-binding element (NKE) was identified at − 412/− 406 of the Nsd1 promoter by electrophoresis mobility shift assay and a chromatin immunoprecipitation assay. H2O2 obviously reduced the p646-luc promoter activity, and the depletion of Nkx2.5 expression weakened H2O2 inhibition on the p646-luc promoter. The overexpression of Nkx2.5 increase Nsd1 p646-luc promoter activity, but did not affected p646-luc-mut. Furthermore, overexpression and depletion of Nkx2.5 led to the increase and decrease of Nsd1 protein and mRNA levels. These data indicated that H2O2-induced Nsd1 suppression resulted from the decrease of Nkx2.5 expression through the NKE element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42(10):1634–1650

    Article  CAS  Google Scholar 

  • Barth JL, Clark CD, Fresco VM, Knoll EP, Lee B, Argraves WS, Lee KH (2010) Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis. Dev Dyn 239(7):2024–2033

    Article  CAS  Google Scholar 

  • Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N, Esteller M (2009) Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc Natl Acad Sci U S A 106(51):21830–21835

    Article  CAS  Google Scholar 

  • Biben C, Harvey RP (1997) Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHAND during murine heart development. Genes Dev 11:1357–1369

    Article  CAS  Google Scholar 

  • Chen CY, Schwartz RJ (1995) Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem 270(26):15628–15633

    Article  CAS  Google Scholar 

  • Chen L, Kwong M, Lu R, Ginzinger D, Lee C, Leung L, Chan JY (2003) Nrf1 is critical for redox balance and survival of liver cells during development. Mol Cell Biol 23(13):4673–4686

    Article  CAS  Google Scholar 

  • Choufani S, Cytrynbaum C, Chung BH et al (2015) NSD1 mutations generate a genome-wide DNA methylation signature. Nat Commun 6:10207

    Article  CAS  Google Scholar 

  • Chu G, Li Y, Dong X, Liu J, Zhao Y (2014) Role of NSD1 in H2O2-induced GSTM3 suppression. Cell Signal 26(12):2757–2764

    Article  CAS  Google Scholar 

  • Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG (2012) Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44(3):343–347

    Article  Google Scholar 

  • Dennery PA (2007) Effects of oxidative stress on embryonic development. Birth Defects Res C Embryo Today 81(3):155–162

    Article  CAS  Google Scholar 

  • Dennery PA (2010) Oxidative stress in development: nature or nurture. Free Radic biol med. 49(7): 1147-51,

  • Durocher D, Charron F, Warren R, Schwartz R, Nemer M (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696

    Article  CAS  Google Scholar 

  • Gajewski K, Kim Y, Lee YM, Olson EN, Schulz RA (1997) D-mef2 is a target for Tinman activation during Drosophila heart development. EMBO J 16:515–522

    Article  CAS  Google Scholar 

  • Hu B, Wu YM, Wu Z, Phan SH (2010) Nkx2.5/Csx represses myofibroblast differentiation. Am J Respir Cell Mol Biol 42(2):218–226

    Article  CAS  Google Scholar 

  • Khanal T, Kim D, Johnson A, Choubey D, Kim K (2015) Deregulation of NR2E3, an orphan nuclear receptor, by benzo(a)pyrene-induced oxidative stress is associated with histone modification status change of the estrogen receptor gene promoter. Toxicol Lett 237(3):228–236

    Article  Google Scholar 

  • Kinnunen S, Välimäki M, Tölli M, Wohlfahrt G, Darwich R, Komati H, Nemer M, Ruskoaho H (2015) Nuclear receptor-like structure and interaction of congenital heart disease-associated factors GATA4 and NKX2-5. PLoS One 10(12):e0144145

    Article  Google Scholar 

  • Lei X, Xu JF, Chang RM, Fang F, Zuo CH, Yang LY (2016) JARID2 promote invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition through PTEN/AKT signaling. Oncotarget 7(26):40266–40284

    Article  Google Scholar 

  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654–1666

    Article  CAS  Google Scholar 

  • Makeyev A, Bayarsaihan D (2011) Molecular basis of Williams-Beuren syndrome: TFII-I regulated targets involved in the craniofacial development. Cleft Palate Craniofac J 48:109–116

    Article  Google Scholar 

  • McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    Article  CAS  Google Scholar 

  • Morishita M, di LE (2011) Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta 1816(2):158–163

    CAS  PubMed  Google Scholar 

  • Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460(7252):287–291

    Article  CAS  Google Scholar 

  • Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28

    Article  CAS  Google Scholar 

  • Ozolins TR, Hales BF (1997) Oxidative stress regulates the expression and activity of transcription factor activator protein-1 in rat conceptus. J Pharmacol Exp Ther 280(2):1085–1093

    CAS  PubMed  Google Scholar 

  • Ponticos M, Partridge T, Black CM, Abraham DJ, Bou-Gharios G (2004) Regulation of collagen type I in vascular smooth muscle cells by competition between Nkx2.5 and deltaEF1/ZEB1. Mol Cell Biol 24(14):6151–6161

    Article  CAS  Google Scholar 

  • Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I, Sperling SR (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 7(2):e1001313

    Article  CAS  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105

    Article  CAS  Google Scholar 

  • Wang G, Zhang N, Wei YF, Jin YM, Zhang SY, Cheng X, Ma ZL, Zhao SZ, Chen YP, Chuai M, Hocher B, Yang X (2015) The impact of high-salt exposure on cardiovascular development in the early chick embryo. J Exp Biol 218(Pt 21:3468–3477

    Article  Google Scholar 

  • van Weerd JH, Koshiba-Takeuchi K, Kwon C, Takeuchi JK (2011) Epigenetic factors and cardiac development. Cardiovasc Res 91(2):203–211

    Article  Google Scholar 

  • Yang G, Abate A, George AG, Weng YH, Dennery PA (2004) Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia. J Clin Investig 114(5):669–678

    Article  CAS  Google Scholar 

  • Zheng W, Lu YB, Liang ST, Zhang QJ, Xu J, She ZG, Zhang ZQ, Yang RF, Mao BB, Xu Z, Li L, Hao DL, Lu J, Wei YS, Chen HZ, Liu DP (2013) SIRT1 mediates the protective function of Nkx2.5 during stress in cardiomyocytes. Basic Res Cardiol 108(4):364

    Article  Google Scholar 

  • Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR (1997) CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124:793–804

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Zhao.

Ethics declarations

All experiments conformed to the guide for the care and use of laboratory animals and were approved by the Ethics Committee of Shengjing Hospital (Ethic approval no. 2017PS216K, Shenyang, China).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Chu, G., Wang, L. et al. Role of Nkx2.5 in H2O2-induced Nsd1 suppression. Cell Stress and Chaperones 24, 697–707 (2019). https://doi.org/10.1007/s12192-019-00995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-019-00995-z

Keywords

Navigation