Advertisement

Cell Stress and Chaperones

, Volume 24, Issue 3, pp 621–633 | Cite as

Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia-reoxygenation injury by activating the AMPK-Pak2 pathway

  • Jin Xing
  • Hao Xu
  • Chaobo Liu
  • Zilong Wei
  • Zhihan Wang
  • Liang Zhao
  • Li RenEmail author
Original Paper
  • 100 Downloads

Abstract

Endoplasmic reticulum (ER) stress has been identified as a primary factor involved in brain ischemia-reperfusion injury progression. p21-activated kinase 2 (Pak2) is a novel ER function regulator. The aim of our study is to explore the influence of Pak2 on ER stress and determine whether melatonin attenuates ER stress-mediated cell death by modulating Pak2 expression in vitro using N2a cells. The results of our study demonstrated that hypoxia-reoxygenation (HR) injury repressed the levels of Pak2, an effect that was accompanied by activation of ER stress. In addition, decreased Pak2 was associated with oxidative stress, calcium overload, and caspase-12-mediated apoptosis activation in HR-treated N2a cells. Interestingly, melatonin treatment reversed the decreased Pak2 expression under HR stress. Knockdown of Pak2 abolished the protective effects of melatonin on ER stress, oxidative stress, and caspase-12-related N2a cells death. Additionally, we found that Pak2 was regulated by melatonin via the AMPK pathway; inhibition of AMPK prevented melatonin-mediated Pak2 upregulation, a result that was accompanied by an increase in N2a cell death. Altogether, these results identify the AMPK-Pak2 axis as a new signaling pathway responsible for ER stress and N2a cell viability under HR injury. Modulation of the AMPK-Pak2 cascade via supplementation of melatonin might be considered an effective approach to attenuate reperfusion-mediated N2a cell damage via repression of ER stress.

Keywords

HR injury Melatonin ER stress AMPK Pak2 

Notes

Acknowledgments

The authors are grateful to the Institute of Basic Medicine Science of the Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine for assistance.

Funding

This study was supported by the main subject of the discipline construction of the Pudong New Area Health and Family Planning Commission (PWZzk2017-16) and Pudong New Area Health and Family Planning Commission Leading Talent Development Program (PWRL2017-03).

References

  1. Abeysuriya RG, Lockley SW, Robinson PA, Postnova S (2018) A unified model of melatonin, 6-sulfatoxymelatonin, and sleep dynamics. J Pineal Res 64:e12474.  https://doi.org/10.1111/jpi.12474 CrossRefGoogle Scholar
  2. Abukar Y, Ramchandra R, Hood SG, McKinley MJ, Booth LC, Yao ST, May CN (2018) Increased cardiac sympathetic nerve activity in ovine heart failure is reduced by lesion of the area postrema, but not lamina terminalis. Basic Res Cardiol 113:35.  https://doi.org/10.1007/s00395-018-0695-9 CrossRefGoogle Scholar
  3. Angelova PR, Barilani M, Lovejoy C, Dossena M, Viganò M, Seresini A, Piga D, Gandhi S, Pezzoli G, Abramov AY, Lazzari L (2018) Mitochondrial dysfunction in parkinsonian mesenchymal stem cells impairs differentiation. Redox Biol 14:474–484.  https://doi.org/10.1016/j.redox.2017.10.016 CrossRefGoogle Scholar
  4. Binder P, Wang S, Radu M, Zin M, Collins L, Khan S, Li Y, Sekeres K, Humphreys N, Swanton E, Reid A, Pu F, Oceandy D, Guan K, Hille SS, Frey N, Müller OJ, Cartwright EJ, Chernoff J, Wang X, Liu W (2019) Pak2 as a novel therapeutic target for Cardioprotective endoplasmic reticulum stress response. Circ Res 124:696–711.  https://doi.org/10.1161/CIRCRESAHA.118.312829 CrossRefGoogle Scholar
  5. Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, Coto-Montes A (2018) Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. J Pineal Res 66:e12534.  https://doi.org/10.1111/jpi.12534 CrossRefGoogle Scholar
  6. Botker HE et al (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39.  https://doi.org/10.1007/s00395-018-0696-8 CrossRefGoogle Scholar
  7. Brazao V, Colato RP, Santello FH, Vale GTD, Gonzaga NA, Tirapelli CR, JCD P Jr (2018) Effects of melatonin on thymic and oxidative stress dysfunctions during Trypanosoma cruzi infection. J Pineal Res 65:e12510.  https://doi.org/10.1111/jpi.12510 CrossRefGoogle Scholar
  8. Chelvanambi S, Bogatcheva NV, Bednorz M, Agarwal S, Maier B, Alves NJ, Li W, Syed F, Saber MM, Dahl N, Lu H, Day RB, Smith P, Jolicoeur P, Yu Q, Dhillon NK, Weissmann N, Twigg III HL, Clauss M (2018) HIV-Nef protein persists in the lungs of Aviremic HIV patients and induces endothelial cell death. Am J Respir Cell Mol Biol 60:357–366.  https://doi.org/10.1165/rcmb.2018-0089OC CrossRefGoogle Scholar
  9. Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Bøtker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Maddock H, Ovize M, Walker M, Wiart M, Yellon DM (2018) The 10th biennial hatter cardiovascular institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol 113:43.  https://doi.org/10.1007/s00395-018-0704-z CrossRefGoogle Scholar
  10. Deussen A (2018) Mechanisms underlying coronary autoregulation continue to await clarification. Basic Res Cardiol 113:34.  https://doi.org/10.1007/s00395-018-0693-y CrossRefGoogle Scholar
  11. Ding M, Ning J, Feng N, Li Z, Liu Z, Wang Y, Wang Y, Li X, Huo C, Jia X, Xu R, Fu F, Wang X, Pei J (2018) Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction inrats and the protective effect of melatonin. J Pineal Res 64:e12447.  https://doi.org/10.1111/jpi.12447
  12. Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK (2018) Melatonin and serotonin: mediators in thesymphony of plant morphogenesis. J Pineal Res 64:e12452.  https://doi.org/10.1111/jpi.12452
  13. Erland LAE, Yasunaga A, Li ITS, Murch SJ, Saxena PK (2018) Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J Pineal Res 66:e12527.  https://doi.org/10.1111/jpi.12527 CrossRefGoogle Scholar
  14. Fan T, Pi H, Li M, Ren Z, He Z, Zhu F, Tian L, Tu M, Xie J, Liu M, Li Y, Tan M, Li G, Qing W, Reiter RJ, Yu Z,Wu H, Zhou Z (2018) Inhibiting MT2-TFE3-dependent autophagy enhances melatonin-induced apoptosis intongue squamous cell carcinoma. J Pineal Res 64:e12457.  https://doi.org/10.1111/jpi.12457
  15. Faughnan ME, Gossage JR, Chakinala MM, Oh SP, Kasthuri R, Hughes CCW, McWilliams JP, Parambil JG, Vozoris N, Donaldson J, Paul G, Berry P, Sprecher DL (2019) Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis 22:145–155.  https://doi.org/10.1007/s10456-018-9646-1 CrossRefGoogle Scholar
  16. Fukumoto M, Kondo K, Uni K, Ishiguro T, Hayashi M, Ueda S, Mori I, Niimi K, Tashiro F, Miyazaki S, Miyazaki JI, Inagaki S, Furuyama T (2018) Tip-cell behavior is regulated by transcription factor FoxO1 under hypoxic conditions in developing mouse retinas. Angiogenesis 21:203–214.  https://doi.org/10.1007/s10456-017-9588-z CrossRefGoogle Scholar
  17. Galano A, Reiter RJ (2018) Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res 65:e12514.  https://doi.org/10.1111/jpi.12514 CrossRefGoogle Scholar
  18. Gianni-Barrera R, Butschkau A, Uccelli A, Certelli A, Valente P, Bartolomeo M, Groppa E, Burger MG, Hlushchuk R, Heberer M, Schaefer DJ, Gürke L, Djonov V, Vollmar B, Banfi A (2018) PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis 21:883–900.  https://doi.org/10.1007/s10456-018-9634-5 CrossRefGoogle Scholar
  19. Giatsidis G, Cheng L, Haddad A, Ji K, Succar J, Lancerotto L, Lujan-Hernandez J, Fiorina P, Matsumine H, Orgill DP (2018) Noninvasive induction of angiogenesis in tissues by external suction: sequential optimization for use in reconstructive surgery. Angiogenesis 21:61–78.  https://doi.org/10.1007/s10456-017-9586-1 CrossRefGoogle Scholar
  20. Gonzalez NR, Liou R, Kurth F, Jiang H, Saver J (2018) Antiangiogenesis and medical therapy failure in intracranial atherosclerosis. Angiogenesis 21:23–35.  https://doi.org/10.1007/s10456-017-9578-1 CrossRefGoogle Scholar
  21. Hao L, Sun Q, Zhong W, Zhang W, Sun X, Zhou Z (2018) Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: a molecular mechanism of protection against alcoholic liver disease. Redox Biol 14:626–636.  https://doi.org/10.1016/j.redox.2017.11.005 CrossRefGoogle Scholar
  22. Hardeland R (2018) Melatonin and inflammation-story of a double-edged blade. J Pineal Res 65:e12525.  https://doi.org/10.1111/jpi.12525 CrossRefGoogle Scholar
  23. Ikeda T, Kobayashi S, Morimoto C (2019) Effects of repetitive transcranial magnetic stimulation on ER stress-related genes and glutamate, gamma-aminobutyric acid and glycine transporter genes in mouse brain. Biochem Biophys Rep 17:10–16.  https://doi.org/10.1016/j.bbrep.2018.10.015 Google Scholar
  24. Jeelani R, Maitra D, Chatzicharalampous C, Najeemuddin S, Morris RT, Abu-Soud HM (2018) Melatonin prevents hypochlorous acid-mediated cyanocobalamin destruction and cyanogen chloride generation. J Pineal Res 64:e12463.  https://doi.org/10.1111/jpi.12463 CrossRefGoogle Scholar
  25. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587.  https://doi.org/10.1016/j.redox.2017.11.004 CrossRefGoogle Scholar
  26. Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U (2018) Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 113:42.  https://doi.org/10.1007/s00395-018-0700-3 CrossRefGoogle Scholar
  27. Kim SH, Kwon DY, Kwak JH, Lee S, Lee YH, Yun J, Son T, Jung YS (2018) Tunicamycin-induced ER stress is accompanied with oxidative stress via abrogation of sulfur amino acids metabolism in the liver. Int J Mol Sci 19.  https://doi.org/10.3390/ijms19124114
  28. Korbel C, Gerstner MD, Menger MD, Laschke MW (2018) Notch signaling controls sprouting angiogenesis of endometriotic lesions. Angiogenesis 21:37–46.  https://doi.org/10.1007/s10456-017-9580-7 CrossRefGoogle Scholar
  29. Lan S, Liu J, Luo X, Bi C (2019) Effects of melatonin on acute brain reperfusion stress: role of hippo signaling pathway and MFN2-related mitochondrial protection. Cell Stress Chaperones 24:235–245.  https://doi.org/10.1007/s12192-018-00960-2 CrossRefGoogle Scholar
  30. Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, Redington AN (2018) Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol 113:36.  https://doi.org/10.1007/s00395-018-0694-x CrossRefGoogle Scholar
  31. Li R, Xin T, Li D, Wang C, Zhu H, Zhou H (2018) Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol 18:229–243.  https://doi.org/10.1016/j.redox.2018.07.011 CrossRefGoogle Scholar
  32. Liao W, Zheng Y, Fang W, Liao S, Xiong Y, Li Y, Xiao S, Zhang X, Liu J (2018) Dual specificity phosphatase 6protects neural stem cells from beta-amyloid-induced cytotoxicity through ERK1/2 inactivation. Biomolecules 8:e181.  https://doi.org/10.3390/biom8040181
  33. Matsunuma R, Chan DW, Kim BJ, Singh P, Han A, Saltzman AB, Cheng C, Lei JT, Wang J, Roberto da Silva L, Sahin E, Leng M, Fan C, Perou CM, Malovannaya A, Ellis MJ (2018) DPYSL3 modulates mitosis, migration, and epithelial-to-mesenchymal transition in claudin-low breast cancer. Proc Natl Acad Sci U S A 115:E11978–E11987.  https://doi.org/10.1073/pnas.1810598115 CrossRefGoogle Scholar
  34. Medinas DB, Cabral-Miranda F, Hetz C (2019) ER stress links aging to sporadic ALS. Aging (Albany NY) 11:5–6.  https://doi.org/10.18632/aging.101705 CrossRefGoogle Scholar
  35. Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG (2018) Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 113:46.  https://doi.org/10.1007/s00395-018-0703-0 CrossRefGoogle Scholar
  36. Montoya-Zegarra JA, Russo E, Runge P, Jadhav M, Willrodt AH, Stoma S, Nørrelykke SF, Detmar M, Halin C (2018) AutoTube: a novel software for the automated morphometric analysis of vascular networks in tissues. Angiogenesis.  https://doi.org/10.1007/s10456-018-9652-3
  37. Moore JBT et al (2018) Epigenetically modified cardiac mesenchymal stromal cells limit myocardial fibrosis and promote functional recovery in a model of chronic ischemic cardiomyopathy. Basic Res Cardiol 114:3.  https://doi.org/10.1007/s00395-018-0710-1 CrossRefGoogle Scholar
  38. Na HJ, Yeum CE, Kim HS, Lee J, Kim JY, Cho YS (2018) TSPYL5-mediated inhibition of p53 promotes human endothelial cell function. Angiogenesis.  https://doi.org/10.1007/s10456-018-9656-z
  39. Nawaz IM, Chiodelli P, Rezzola S, Paganini G, Corsini M, Lodola A, di Ianni A, Mor M, Presta M (2018) N-tert-butyloxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2) inhibits the angiogenic activity of heparin-binding growth factors. Angiogenesis 21:47–59.  https://doi.org/10.1007/s10456-017-9581-6 CrossRefGoogle Scholar
  40. Park HJ, Park JY, Kim JW, Yang SG, Jung JM, Kim MJ, Kang MJ, Cho YH, Wee G, Yang HY, Song BS, Kim SU, Koo DB (2018) Melatonin improves the meiotic maturation of porcine oocytes by reducing endoplasmic reticulum stress during in vitro maturation. J Pineal Res 64:e12458.  https://doi.org/10.1111/jpi.12458 CrossRefGoogle Scholar
  41. Quintela T, Gonçalves I, Silva M, Duarte AC, Guedes P, Andrade K, Freitas F, Talhada D, Albuquerque T, Tavares S, Passarinha LA, Cipolla-Neto J, Santos CRA (2018) Choroid plexus is an additional source of melatonin in the brain. J Pineal Res 65:e12528.  https://doi.org/10.1111/jpi.12528 CrossRefGoogle Scholar
  42. Ramos-Alvarez I, Lee L, Jensen RT (2018) Cyclic AMP-dependent protein kinase a and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na+, K+-ATPase in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 316:G263–G277.  https://doi.org/10.1152/ajpgi.00275.2018 CrossRefGoogle Scholar
  43. Reddy KRK, Dasari C, Duscharla D, Supriya B, Ram NS, Surekha MV, Kumar JM, Ummanni R (2018) Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 21:79–94.  https://doi.org/10.1007/s10456-017-9587-0 CrossRefGoogle Scholar
  44. Schindler L, Dickerhof N, Hampton MB, Bernhagen J (2018) Post-translational regulation of macrophage migration inhibitory factor: basis for functional fine-tuning. Redox Biol 15:135–142.  https://doi.org/10.1016/j.redox.2017.11.028 CrossRefGoogle Scholar
  45. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Bradley MD, Wagner BA, Buettner GR, Monga V, Milhem M, Spitz DR, Allen BG (2018) Redox active metals and H2O2 mediate the increased efficacy of pharmacological ascorbate in combination with gemcitabine or radiation in pre-clinical sarcoma models. Redox Biol 14:417–422.  https://doi.org/10.1016/j.redox.2017.09.012 CrossRefGoogle Scholar
  46. Serrato AJ, Romero-Puertas MC, Lazaro-Payo A, Sahrawy M (2018) Regulation by S-nitrosylation of the Calvin-Benson cycle fructose-1,6-bisphosphatase in Pisum sativum. Redox Biol 14:409–416.  https://doi.org/10.1016/j.redox.2017.10.008 CrossRefGoogle Scholar
  47. Shah SS, Rodriguez G, Musick A, Walters W, de Cordoba N, Barbarite E, Marlow M, Marples B, Prince J,Komotar R, Vanni S, Graham R (2019) Targeting glioblastoma stem cells with 2-deoxy-D-glucose (2-DG) potentiates radiation-induced unfolded protein response (UPR). Cancers (Basel) 11:e159.  https://doi.org/10.3390/cancers11020159
  48. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H (2018) Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 14:59–71.  https://doi.org/10.1016/j.redox.2017.08.013 CrossRefGoogle Scholar
  49. Wei N, Pu Y, Yang Z, Pan Y, Liu L (2019) Therapeutic effects of melatonin on cerebral ischemia reperfusion injury: role of yap-OPA1 signaling pathway and mitochondrial fusion. Biomed Pharmacother 110:203–212.  https://doi.org/10.1016/j.biopha.2018.11.060 CrossRefGoogle Scholar
  50. Yang J, Kim KS, Iyirhiaro GO, Marcogliese PC, Callaghan SM, Qu D, Kim WJ, Slack RS, Park DS (2019) DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis 10:135.  https://doi.org/10.1038/s41419-019-1354-2 CrossRefGoogle Scholar
  51. Zhang H, Jin B, Faber JE (2018) Mouse models of Alzheimer's disease cause rarefaction of pial collaterals and increased severity of ischemic stroke. Angiogenesis.  https://doi.org/10.1007/s10456-018-9655-0
  52. Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64:e12449.  https://doi.org/10.1111/jpi.12449
  53. Zhou H, Li D, Zhu P, Hu S, Hu N, Ma S, Zhang Y, Han T, Ren J, Cao F, Chen Y (2017) Melatonin suppressesplatelet activation and function against cardiac ischemia/reperfusion injury via PPARgamma/FUNDC1/mitophagy pathways. J Pineal Res 63:e12438.  https://doi.org/10.1111/jpi.12438
  54. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65:e12503.  https://doi.org/10.1111/jpi.12503 CrossRefGoogle Scholar
  55. Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018) Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res 64.  https://doi.org/10.1111/jpi.12471
  56. Zhou H, Shi C, Hu S, Zhu H, Ren J, Chen Y (2018) BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21:599–615.  https://doi.org/10.1007/s10456-018-9611-z CrossRefGoogle Scholar
  57. Zhou H, Wang J, Hu S, Zhu H, Toanc S, Ren J (2019) BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J Cell Physiol 234:5056–5069.  https://doi.org/10.1002/jcp.27308 CrossRefGoogle Scholar
  58. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 15:335–346.  https://doi.org/10.1016/j.redox.2017.12.019 CrossRefGoogle Scholar
  59. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y (2018) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113:23.  https://doi.org/10.1007/s00395-018-0682-1 CrossRefGoogle Scholar
  60. Zhou H, Zhu P, Guo J, Hu N, Wang S, Li D, Hu S, Ren J, Cao F, Chen Y (2017) Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol 13:498–507.  https://doi.org/10.1016/j.redox.2017.07.007 CrossRefGoogle Scholar
  61. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25:1080–1093.  https://doi.org/10.1038/s41418-018-0086-7 CrossRefGoogle Scholar
  62. Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H, Chen Y (2018) Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones 23:101–113.  https://doi.org/10.1007/s12192-017-0827-4 CrossRefGoogle Scholar

Copyright information

© Cell Stress Society International 2019

Authors and Affiliations

  • Jin Xing
    • 1
  • Hao Xu
    • 1
  • Chaobo Liu
    • 1
  • Zilong Wei
    • 1
  • Zhihan Wang
    • 1
  • Liang Zhao
    • 1
  • Li Ren
    • 1
    Email author
  1. 1.Department of Neurosurgery, Shanghai Pudong HospitalShanghai Fu Dan University School of MedicineShanghaiChina

Personalised recommendations