Small heat shock protein speciation: novel non-canonical 44 kDa HspB5-related protein species in rat and human tissues

  • Rainer Benndorf
  • Robert R. Gilmont
  • Sahoko Hirano
  • Richard F. Ransom
  • Peter R. Jungblut
  • Martin Bommer
  • James E. Goldman
  • Michael J. Welsh
Original Paper


When analyzing small stress proteins of rat and human tissues by electrophoretic methods followed by western blotting, and using the anti-HspB1/anti-HspB5 antibody clone 8A7, we unexpectedly found a protein with a molecular mass of ~44 kDa. On two-dimensional gels, this protein resolved into four distinct species. Electrophoretic and immunological evidence suggests that this 44 kDa protein is a derivative of HspB5, most likely a covalently linked HspB5 dimer. This HspB5-like 44 kDa protein (HspB5L-P44) is particularly abundant in rat heart, brain, and renal cortex and glomeruli. HspB5L-P44 was also found in human brains, including those from patients with Alexander disease, a condition distinguished by cerebral accumulation of HspB5. Gray matter of such a patient contained an elevated amount of HspB5L-P44. A spatial model of structurally ordered dimeric HspB5 α-crystallin domains reveals the exposed and adjacent position of the two peptide segments homologous to the HspB1-derived 8A7 antigen determinant peptide (epitope). This explains the observed extraordinary high avidity of the 8A7 antibody towards HspB5L-P44, as opposed to commonly used HspB5-specific antibodies which recognize other epitopes. This scenario also explains the remarkable fact that no previous study reported the existence of HspB5L-P44 species. Exposure of rat endothelial cells to UV light, an oxidative stress condition, temporarily increased HspB5L-P44, suggesting physiological regulation of the dimerization. The existence of HspB5L-P44 supports the protein speciation discourse and fits to the concept of the protein code, according to which the expression of a given gene is reflected only by the complete set of the derived protein species.


Protein modification Covalently bonded HspB5 dimers HspB1-/HspB5-specific antibody clone 8A7 Protein speciation Mammals 


Compliance with ethical standards

Rats were housed in animal facilities accredited by the American Association of Laboratory Animal Care, with free access to pelleted food and water. Housing and all procedures were conducted in accordance with the guidelines of the National Institute of Health and were approved by the University of Michigan Committee on Use and Care of Animals (approval nos. 7835 and 7989). Rats were euthanized by inhalation of carbon dioxide in accordance with the American Veterinary Medical Association guidelines on euthanasia.


  1. Aquilina JA, Shrestha S, Morris AM, Ecroyd H (2013) Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. J Biol Chem 288:13602–13609CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252 Erratum in: J Mol Biol (2009) 394:588CrossRefPubMedGoogle Scholar
  3. Balasubramanian D, Kanwar R (2002) Molecular pathology of dityrosine cross-links in proteins: structural and functional analysis of four proteins. Mol Cell Biochem 234-235:27–38CrossRefPubMedGoogle Scholar
  4. Behlke J, Dube P, van Heel M, Wieske M, Hayess K, Benndorf R, Lutsch G (1995) Supramolecular structure of the small heat shock protein Hsp25. Progr Colloid Polym Sci 99:87–93CrossRefGoogle Scholar
  5. Benndorf R (2010) HSPB1 and HSPB8 mutations in neuropathies. In: Simon S, Arrigo A-P (eds) Small stress proteins and human diseases. Nova Science Publishers, New York, pp 301–324Google Scholar
  6. Benndorf R, Engel K, Gaestel M (2000) Analysis of small Hsp phosphorylation. Methods Mol Biol 99:431–445PubMedGoogle Scholar
  7. Benndorf R, Hayess K, Stahl J, Bielka H (1992) Cell-free phosphorylation of the murine small heat-shock protein hsp25 by an endogenous kinase from Ehrlich ascites tumor cells. Biochim Biophys Acta 1136:203–207CrossRefPubMedGoogle Scholar
  8. Benndorf R, Jungblut PR (2015) Reconsidering old data: non-canonical HspB1 species and the enigma of the cytoskeletal function of HspB1. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins. Springer Verlag, Heidelberg, pp 471–486CrossRefGoogle Scholar
  9. Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO (2014) Neuropathy- and myopathy-associated mutations in human small heat shock proteins: characteristics and evolutionary history of the mutation sites. Mutat Res Rev Mutat Res 761:15–30CrossRefGoogle Scholar
  10. Benndorf R, Sun X, Gilmont RR, Biederman KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC, Welsh MJ (2001) HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27). J Biol Chem 276:26753–26761CrossRefPubMedGoogle Scholar
  11. Bhat SP, Horwitz J, Srinivasan A, Ding L (1991) Alpha B-crystallin exists as an independent protein in the heart and in the lens. Eur J Biochem 202:775–781CrossRefPubMedGoogle Scholar
  12. Bitar KN, Kaminski MS, Hailat N, Cease KB, Strahler JR (1991) Hsp27 is a mediator of sustained smooth muscle contraction in response to bombesin. Biochem Biophys Res Commun 181:1192–1200CrossRefPubMedGoogle Scholar
  13. Carver JA, Esposito G, Schwedersky G, Gaestel M (1995) 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett 369:305–310CrossRefPubMedGoogle Scholar
  14. Crothers DM, Metzger H (1972) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9:341–357CrossRefPubMedGoogle Scholar
  15. Datskevich PN, Nefedova VV, Sudnitsyna MV, Gusev NB (2012) Mutations of small heat shock proteins and human congenital diseases. Biochemistry (Mosc) 77:1500–1514CrossRefGoogle Scholar
  16. Delbecq SP, Rosenbaum JC, Klevit RE (2015) A mechanism of subunit recruitment in human small heat shock protein oligomers. Biochemistry 54:4276–4284CrossRefPubMedPubMedCentralGoogle Scholar
  17. den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of alphaB-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280:37139–37148CrossRefGoogle Scholar
  18. Dubin RA, Wawrousek EF, Piatigorsky J (1989) Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol 9:1083–1091CrossRefPubMedPubMedCentralGoogle Scholar
  19. Edeling MA, Austin SK, Shrestha B, Dowd KA, Mukherjee S, Nelson CA, Johnson S, Mabila MN, Christian EA, Rucker J, Pierson TC, Diamond MS, Fremont DH (2014) Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement. PLoS Pathog 10:e1004072CrossRefPubMedPubMedCentralGoogle Scholar
  20. Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA (2013) The specificity of the interaction between αB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond Ser B Biol Sci 368:20120375CrossRefGoogle Scholar
  21. Fisher TE, Oberhauser AF, Carrion-Vazquez M, Marszalek PE, Fernandez JM (1999) The study of protein mechanics with the atomic force microscope. Trends Biochem Sci 24:379–384CrossRefPubMedGoogle Scholar
  22. Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62–69CrossRefPubMedPubMedCentralGoogle Scholar
  23. Franke C, Gräfe D, Bartsch H, Bachmann M (2009) Use of non-radioactive detection method for north- and southwestern blot. In: Methods in molecular biology (Clifton, N.J.), vol 536, pp 441–449Google Scholar
  24. Gilmont RR, Dardano A, Engle JS, Adamson BS, Welsh MJ, Li T, Remick DG, Smith DJ Jr, Rees RS (1996) TNF-alpha potentiates oxidant and reperfusion-induced endothelial cell injury. J Surg Res 61:175–182CrossRefPubMedGoogle Scholar
  25. Goldenberg DP (2003) Computational simulation of the statistical properties of unfolded proteins. J Mol Biol 326:1615–1633CrossRefPubMedGoogle Scholar
  26. Goldman JE, Corbin E (1991) Rosenthal fibers contain ubiquitinated alpha B-crystallin. Am J Pathol 139:933–938PubMedPubMedCentralGoogle Scholar
  27. Groenen PJ, Merck KB, de Jong WW, Bloemendal H (1994) Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. Eur J Biochem 225:1–19CrossRefPubMedGoogle Scholar
  28. Guess A, Agrawal S, Wei CC, Ransom RF, Benndorf R, Smoyer WE (2010) Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am J Physiol Renal Physiol 299:F845–F853CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guess AJ, Ayoob R, Chanley M, Manley J, Cajaiba MM, Agrawal S, Pengal R, Pyle AL, Becknell B, Kopp JB, Ronkina N, Gaestel M, Benndorf R, Smoyer WE (2013) Crucial roles of the protein kinases MK2 and MK3 in a mouse model of glomerulonephritis. PLoS One 8(1):e54239CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guo X, Zhao C, Wang F, Zhu Y, Cui Y, Zhou Z, Huo R, Sha J (2010) Investigation of human testis protein heterogeneity using 2-dimensional electrophoresis. J Androl 31:419–429CrossRefPubMedGoogle Scholar
  31. Hall RA (2004) Studying protein-protein interactions via blot overlay or far western blot. Methods Mol Biol 261:167–174PubMedGoogle Scholar
  32. Hanson SR, Hasan A, Smith DL, Smith JB (2000) The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp Eye Res 71:195–207CrossRefPubMedGoogle Scholar
  33. Haslbeck M, Peschek J, Buchner J, Weinkauf S (2016) Structure and function of α-crystallins: traversing from in vitro to in vivo. Biochim Biophys Acta 1860:149–166CrossRefPubMedGoogle Scholar
  34. Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 143:1743–1753PubMedPubMedCentralGoogle Scholar
  35. Hirano S, Rees RS, Yancy SL, Welsh MJ, Remick DG, Yamada T, Hata J, Gilmont RR (2004) Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo. Cell Biol Toxicol 20:1–14CrossRefPubMedGoogle Scholar
  36. Hoehenwarter W, Tang Y, Ackermann R, Pleissner KP, Schmid M, Stein R, Zimny-Arndt U, Kumar NM, Jungblut PR (2008) Identification of proteins that modify cataract of mouse eye lens. Proteomics 8:5011–5024CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276:5346–5352CrossRefPubMedGoogle Scholar
  38. Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941CrossRefPubMedGoogle Scholar
  39. Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143:487–495PubMedPubMedCentralGoogle Scholar
  40. Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57:71–78CrossRefPubMedGoogle Scholar
  41. Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140:345–356PubMedPubMedCentralGoogle Scholar
  42. Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, Van Rossum BJ, Oschkinat H (2010) Solid-state nmr and saxs studies provide a structural basis for the activation of alphab-crystallin oligomers. Nat Struct Mol Biol 17:1037–1042CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE (2001) Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem 276:39911–39918CrossRefPubMedGoogle Scholar
  44. Jungblut PR, Holzhütter HG, Apweiler R, Schlüter H (2008) The speciation of the proteome. Chem Cent J 2:16CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jungblut PR, Otto A, Favor J, Löwe M, Müller E-C, Kastner M, Sperling K, Klose J (1998) Identification of the mouse crystallins in 2D protein patterns by sequencing and mass spectrometry. Application to cataract mutants. FEBS Lett 435:131–137CrossRefPubMedGoogle Scholar
  46. Jungblut PR, Thiede B, Schlüter H (2016) Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts. J Proteome 134:1–4CrossRefGoogle Scholar
  47. Kamei A, Hamaguchi T, Matsuura N, Iwase H, Masuda K (2000) Post-translational modification of alphaB-crystallin of normal human lens. Biol Pharm Bull 23:226–230CrossRefPubMedGoogle Scholar
  48. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111CrossRefPubMedGoogle Scholar
  49. Kato K, Shinohara H, Kurobe N, Inaguma Y, Shimizu K, Ohshima K (1991) Tissue distribution and developmental profiles of immunoreactive alpha B crystallin in the rat determined with a sensitive immunoassay system. Biochim Biophys Acta 1074:201–208Google Scholar
  50. Kaufman EN, Jain RK (1992) Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res 52:4157–4167PubMedGoogle Scholar
  51. Keenan J, Elia G, Dunn MJ, Orr DF, Pierscionek BK (2009) Crystallin distribution patterns in concentric layers from toad eye lens. Proteomics 9:5340–5349CrossRefPubMedGoogle Scholar
  52. Klemenz R, Andres AC, Fröhli E, Schäfer R, Aoyama A (1993) Expression of the murine small heat shock proteins hsp25 and αB-crystallin in the absence of stress. J Cell Biol 120:639–645CrossRefPubMedGoogle Scholar
  53. Klemenz R, Fröhli E, Steiger RH, Schäfer R, Aoyama A (1991) Alpha B-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A 88:3652–3656CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuhn W (1934) Über die Gestalt fadenförmiger Moleküle in Lösungen. Kolloid Z 68:2–15CrossRefGoogle Scholar
  55. Lapko VN, Smith DL, Smith JB (2001) In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92. Protein Sci 10:1130–1136CrossRefPubMedPubMedCentralGoogle Scholar
  56. Li X-P, Pleißner K-P, Scheler C, Regitz-Zagrosek V, Salnikow J, Jungblut P (1999) A two-dimensional electrophoresis database of rat heart proteins. Electrophoresis 20:891–897CrossRefPubMedGoogle Scholar
  57. Lin P, Smith DL, Smith JB (1997) In vivo modification of the C-terminal lysine of human lens alphaB-crystallin. Exp Eye Res 65:673–680CrossRefPubMedGoogle Scholar
  58. Lowe J, Errington DR, Lennox G, Pike I, Spendlove I, Landon M, Mayer RJ (1992b) Ballooned neurons in several neurodegenerative diseases and stroke contain alpha B crystallin. Neuropathol Appl Neurobiol 18:341–350CrossRefPubMedGoogle Scholar
  59. Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ (1992a) Alpha B crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol 166:61–68CrossRefPubMedGoogle Scholar
  60. Lutsch G, Vetter R, Offhauss U, Wieske M, Gröne HJ, Klemenz R, Schimke I, Stahl J, Benndorf R (1997) Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation 96:3466–3476CrossRefPubMedGoogle Scholar
  61. Macip S, Mezquita C, Mezquita J (1997) Alternative transcriptional initiation and alternative use of polyadenylation signals in the alphaB-crystallin gene expressed in different chicken tissues. Gene 187:253–257CrossRefPubMedGoogle Scholar
  62. Maiti M, Kono M, Chakrabarti B (1988) Heat-induced changes in the conformation of alpha- and beta-crystallins: unique thermal stability of alpha-crystallin. FEBS Lett 236:109–114CrossRefPubMedGoogle Scholar
  63. Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WW (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem 268:1046–1052PubMedGoogle Scholar
  64. Mörner CT (1893) Untersuchungen der Proteinsubstanzen in lichtbrechenden Medien des Auges. Hoppe-Seylers. Z Physiol Chem 18:61–106Google Scholar
  65. Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159CrossRefPubMedGoogle Scholar
  66. Ortwerth BJ, Slight SH, Prabhakaram M, Sun Y, Smith JB (1992) Site-specific glycation of lens crystallins by ascorbic acid. Biochim Biophys Acta 1117:207–215CrossRefPubMedGoogle Scholar
  67. Plückthun A, Pack P (1997) New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology 3:83–105CrossRefPubMedGoogle Scholar
  68. Polden J, McManus CA, Dos Remedios C, Dunn MJ (2011) A 2-D gel reference map of the basic human heart proteome. Proteomics 11:3582–3586CrossRefPubMedGoogle Scholar
  69. Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber HJ, Ando T, Hinterdorfer P (2014) IgGs are made for walking on bacterial and viral surfaces. Nat Commun 5:4394CrossRefPubMedGoogle Scholar
  70. Rajagopal P, Tse E, Borst AJ, Delbecq SP, Shi L, Southworth DR, Klevit RE (2015) A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. elife 4. doi:
  71. Raman B, Ramakrishna T, Rao CM (1995) Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem 270:19888–19892CrossRefPubMedGoogle Scholar
  72. Rico F, Rigato A, Picas L, Scheuring S (2013) Mechanics of proteins with a focus on atomic force microscopy. J Nanobiotechnol 11(Suppl 1):S3. CrossRefGoogle Scholar
  73. Renkawek K, de Jong WW, Merck KB, Frenken CW, van Workum FP, Bosman GJ (1992) Alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 83:324–327CrossRefGoogle Scholar
  74. Reymond MA, Sanchez J-C, Hughes GJ, Riese J, Tortola S, Peinado MA, Kirchner T, Hohenberger W, Hochstrasser DF, Kockerling F (1997) Standardized characterization of gene expression in human colorectal epithelium by two-dimensional electrophoresis. Electrophoresis 18:2842–2848CrossRefPubMedGoogle Scholar
  75. Roquemore EP, Chevrier MR, Cotter RJ, Hart GW (1996) Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35:3578–3586CrossRefPubMedGoogle Scholar
  76. Saha S, Das KP (2007) Unfolding and refolding of bovine alpha-crystallin in urea and its chaperone activity. Protein J 26:315–326CrossRefPubMedGoogle Scholar
  77. Sanchez JC, Chiappe D, Converset V, Hoogland C, Binz PA, Paesano S, Appel RD, Wang S, Sennitt M, Nolan A, Cawthorne MA, Hochstrasser DF (2001) The mouse SWISS-2DPAGE database: a tool for proteomics study of diabetes and obesity. Proteomics 1:136–163CrossRefPubMedGoogle Scholar
  78. Sarto C, Marocchi A, Sanchez J-C, Giannone D, Frutiger S, Golaz O, Wilkins MR, Doro G, Cappellano F, Hughes GJ, Hochstrasser DF, Mocarelli P (1997) Renal cell carcinoma and normal kidney protein expression. Electrophoresis 18:599–604CrossRefPubMedGoogle Scholar
  79. Scheler C, Müller EC, Stahl J, Müller-Werdan U, Salnikow J, Jungblut P (1997) Identification and characterization of heat shock protein 27 protein species in human myocardial two- dimensional electrophoresis patterns. Electrophoresis 18:2823–2831CrossRefPubMedGoogle Scholar
  80. Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 9:3–11Google Scholar
  81. Schwab K, Neumann B, Vignon-Zellweger N, Fischer A, Jungblut PR, Stein R, Scheler C, Theuring F (2011) Dietary phytoestrogen supplementation induces sex differences in the myocardial protein pattern of mice: a comparative proteomics study. Proteomics 11:3887–3904CrossRefPubMedGoogle Scholar
  82. Shum WK, Maleknia SD, Downard KM (2005) Onset of oxidative damage in alpha-crystallin by radical probe mass spectrometry. Anal Biochem 344:247–256CrossRefPubMedGoogle Scholar
  83. Sims RJIII, Reinberg D (2008) Is there a code embedded in proteins that is based on posttranslational modifications? Nat Rev 9:1–6CrossRefGoogle Scholar
  84. Smoyer WE, Ransom R, Harris RC, Welsh MJ, Lutsch G, Benndorf R (2000) Ischemic acute renal failure induces differential expression of small heat shock proteins. J Am Soc Nephrol 11:211–221PubMedGoogle Scholar
  85. Sudnitsyna MV, Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) The role of intrinsically disordered regions in the structure and functioning of small heat shock proteins. Curr Protein Pept Sci 13:76–85CrossRefPubMedGoogle Scholar
  86. Tanford C, Kawahara K, Lapanje S (1966) Proteins in 6-M guanidine hydrochloride. Demonstration of random coil behavior. J Biol Chem 241:1921–1923PubMedGoogle Scholar
  87. Tanguay RM, Wu Y, Khandjian EW (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Dev Genet 14:112–118CrossRefPubMedGoogle Scholar
  88. Treweek TM, Rekas A, Walker MJ, Carver JA (2010) A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Exp Eye Res 91:691–699CrossRefPubMedGoogle Scholar
  89. van de Bovenkamp M, Groothuis GM, Meijer DK, Slooff MJ, Olinga P (2006) Human liver slices as an in vitro model to study toxicity-induced hepatic stellate cell activation in a multicellular milieu. Chem Biol Interact 162:62–69CrossRefPubMedGoogle Scholar
  90. Westbrook JA, Wheeler JX, Wait R, Welson SY, Dunn MJ (2006) The human heart proteome: two-dimensional maps using narrow-range immobilised pH gradients. Electrophoresis 27:1547–1555CrossRefPubMedGoogle Scholar
  91. Zavialov A, Benndorf R, Ehrnsperger M, Zav'yalov V, Dudich I, Buchner J, Gaestel M (1998a) The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. Int J Biol Macromol 22:163–173CrossRefPubMedGoogle Scholar
  92. Zavialov AV, Gaestel M, Korpela T, Zav'yalov VP (1998b) Thiol/disulfide exchange between small heat shock protein 25 and glutathione. Biochim Biophys Acta 1388:123–132CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Plastic and Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborUSA
  4. 4.Core Facility Protein AnalysisMax-Planck-Institute for Infection BiologyBerlinGermany
  5. 5.Max-Delbrück-Centrum für Molekulare MedizinBerlinGermany
  6. 6.Department of Pathology and Cell BiologyColumbia UniversityNew YorkUSA

Personalised recommendations