Advertisement

Cell Stress and Chaperones

, Volume 23, Issue 4, pp 711–721 | Cite as

Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis

  • Yidan Zhang
  • Zhi Zhou
  • Lingui Wang
  • Bo Huang
Original Paper

Abstract

Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

Keywords

Environmental stress Heat shock protein 70 ATPase activity Coral bleaching Stony coral 

Notes

Acknowledgements

The authors were grateful to all the laboratory members for the continuous technical advice and helpful discussion. We thanked Xiaopeng Yu for his help with the gene cloning. This research was supported by a grant (No. 31772460) from National Science Foundation of China, Natural Science Foundation (No. 20164158) of Hainan Province, and the Scientific Research Foundation (kyqd1554) of Hainan University.

References

  1. Baykov AA, Evtushenko OA, Avaeva SM (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171(2):266–270.  https://doi.org/10.1016/0003-2697(88)90484-8 CrossRefPubMedGoogle Scholar
  2. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192(1):112–116.  https://doi.org/10.1016/0003-2697(91)90194-X CrossRefPubMedGoogle Scholar
  3. Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci U S A 88(16):6911–6915.  https://doi.org/10.1073/pnas.88.16.6911 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6(7):1153–1164.  https://doi.org/10.1101/gad.6.7.1153 CrossRefPubMedGoogle Scholar
  5. Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14(10):2281–2292PubMedPubMedCentralGoogle Scholar
  6. Hayes RL, King CM (1995) Induction of 70-kD heat shock protein in scleractinian corals by elevated temperature: significance for coral bleaching. Mol Mar Biol Biotechnol 4(1):36–42PubMedGoogle Scholar
  7. Locke M, Tanguay RM (1996) Increased HSF activation in muscles with a high constitutive Hsp70 expression. Cell Stress Chaperones 1(3):189–196.  https://doi.org/10.1379/1466-1268(1996)001<0189:IHAIMW>2.3.CO;2 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271(16):9347–9354.  https://doi.org/10.1074/jbc.271.16.9347 CrossRefPubMedGoogle Scholar
  9. Fang L-s, Huang S-p, Lin K-l (1997) High temperature induces the synthesis of heat-shock proteins and the elevation of intracellular calcium in the coral Acropora grandis. Coral Reefs 16(2):127–131.  https://doi.org/10.1007/s003380050066 CrossRefGoogle Scholar
  10. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Marine Freshwater Research 50(8):839–866.  https://doi.org/10.1071/MF99078 CrossRefGoogle Scholar
  11. Tom M, Douek J, Yankelevich I, Bosch TC, Rinkevich B (1999) Molecular characterization of the first heat shock protein 70 from a reef coral. Biochem Biophys Res Commun 262(1):103–108.  https://doi.org/10.1006/bbrc.1999.1165 CrossRefPubMedGoogle Scholar
  12. Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol (NY) 2(6):533–544.  https://doi.org/10.1007/s101260000038 CrossRefGoogle Scholar
  13. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2(8):469–475.  https://doi.org/10.1038/35019501 CrossRefPubMedGoogle Scholar
  14. Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 229:73–82.  https://doi.org/10.3354/meps229073 CrossRefGoogle Scholar
  15. Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129.  https://doi.org/10.3354/meps242119 CrossRefGoogle Scholar
  16. Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33(4):533–543.  https://doi.org/10.1016/S0891-5849(02)00907-3 CrossRefPubMedGoogle Scholar
  17. Douglas AE (2003) Coral bleaching––how and why? Mar Pollut Bull 46(4):385–392.  https://doi.org/10.1016/s0025-326x(03)00037-7 CrossRefPubMedGoogle Scholar
  18. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933.  https://doi.org/10.1126/science.1085046 CrossRefPubMedGoogle Scholar
  19. Hashimoto K, Shibuno T, Murayama-Kayano E, Tanaka H, Kayano T (2004) Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23:485–491.  https://doi.org/10.1007/s00338-004-0410-1 Google Scholar
  20. Robbart ML, Peckol P, Scordilis SP, Curran HA, Brown-Saracino J (2004) Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize. Mar Ecol Prog Ser 283:151–160.  https://doi.org/10.3354/meps283151 CrossRefGoogle Scholar
  21. Berkelmans R, van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc Biol Sci 273(1599):2305–2312.  https://doi.org/10.1098/rspb.2006.3567 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Swain JF, Schulz EG, Gierasch LM (2006) Direct comparison of a stable isolated Hsp70 substrate-binding domain in the empty and substrate-bound states. J Biol Chem 281(3):1605–1611.  https://doi.org/10.1074/jbc.M509356200 CrossRefPubMedGoogle Scholar
  23. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317(5834):86–94.  https://doi.org/10.1126/science.1139158 CrossRefPubMedGoogle Scholar
  24. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211(19):3059–3066.  https://doi.org/10.1242/jeb.009597 CrossRefPubMedGoogle Scholar
  25. Jinwal UK, Miyata Y, Koren J, Jones JR, Trotter JH, Chang L, O'Leary J, Morgan D, Lee DC, Shults CL, Rousaki A, Weeber EJ, Zuiderweg ERP, Gestwicki JE, Dickey CA (2009) Chemical manipulation of hsp70 ATPase activity regulates tau stability. J Neurosci 29(39):12079–12088.  https://doi.org/10.1523/JNEUROSCI.3345-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Prahlad V, Morimoto RI (2009) Integrating the stress response: lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol 19(2):52–61.  https://doi.org/10.1016/j.tcb.2008.11.002 CrossRefPubMedGoogle Scholar
  27. Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. Mol Ecol 18(24):5101–5114.  https://doi.org/10.1111/j.1365-294X.2009.04419.x CrossRefPubMedGoogle Scholar
  28. Venn AA, Quinn J, Jones R, Bodnar A (2009) P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat Toxicol 93(4):188–195.  https://doi.org/10.1016/j.aquatox.2009.05.003 CrossRefPubMedGoogle Scholar
  29. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, Van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373(2):102–110.  https://doi.org/10.1016/j.jembe.2009.03.011 CrossRefGoogle Scholar
  30. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PRH, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TCG, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of hydra. Nature 464(7288):592–596.  https://doi.org/10.1038/nature08830 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gupta S, Deepti A, Deegan S, Lisbona F, Hetz C, Samali A (2010) HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biol 8(7):e1000410.  https://doi.org/10.1371/journal.pbio.1000410 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhang H, Kong P, Wang L, Zhou Z, Yang J, Zhang Y, Qiu L, Song L (2010) Cflec-5, a pattern recognition receptor in scallop Chlamys farreri agglutinating yeast Pichia pastoris. Fish Shellfish Immunol 29(1):149–156.  https://doi.org/10.1016/j.fsi.2010.02.024 CrossRefPubMedGoogle Scholar
  33. Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD (2011) Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One 6(10):e26687.  https://doi.org/10.1371/journal.pone.0026687 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476(7360):320–U382.  https://doi.org/10.1038/nature10249 CrossRefPubMedGoogle Scholar
  35. Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci U S A 108(24):9905–9909.  https://doi.org/10.1073/pnas.1106924108 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nakamura M, Morita M, Kurihara H, Mitarai S (2012) Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 1(2):75–81.  https://doi.org/10.1242/bio.2011036 CrossRefPubMedGoogle Scholar
  37. Putnam HM, Mayfield AB, Fan TY, Chen CS, Gates RD (2012) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar Biol 160(8):2157–2173.  https://doi.org/10.1007/s00227-012-2129-9 CrossRefGoogle Scholar
  38. Shinzato C, Hamada M, Shoguchi E, Kawashima T, Satoh N (2012) The repertoire of chemical defense genes in the coral Acropora digitifera genome. Zool Sci 29(8):510–517.  https://doi.org/10.2108/zsj.29.510 CrossRefPubMedGoogle Scholar
  39. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CEW, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54.  https://doi.org/10.1038/nature11413 CrossRefPubMedGoogle Scholar
  40. Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43(3):168–175.  https://doi.org/10.1016/j.ymeth.2007.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82(1):323–355.  https://doi.org/10.1146/annurev-biochem-060208-092442 CrossRefPubMedGoogle Scholar
  42. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38(10):507–514.  https://doi.org/10.1016/j.tibs.2013.08.001 CrossRefPubMedGoogle Scholar
  43. Mayfield AB, Chen MN, Meng PJ, Lin HJ, Chen CS, Liu PJ (2013) The physiological response of the reef coral Pocillopora damicornis to elevated temperature: results from coral reef mesocosm experiments in southern Taiwan. Mar Environ Res 86:1–11.  https://doi.org/10.1016/j.marenvres.2013.01.004 CrossRefPubMedGoogle Scholar
  44. Stefanik DJ, Wolenski FS, Friedman LE, Gilmore TD, Finnerty JR (2013) Isolation of DNA, RNA and protein from the starlet sea anemone Nematostella vectensis. Nat Protoc 8(5):892–899.  https://doi.org/10.1038/nprot.2012.151 CrossRefPubMedGoogle Scholar
  45. Rosic N, Kaniewska P, Chan CK, Ling EY, Edwards D, Dove S, Hoegh-Guldberg O (2014) Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics 15(1):1052.  https://doi.org/10.1186/1471-2164-15-1052 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR, Voolstra CR (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 112(38):11893–11898.  https://doi.org/10.1073/pnas.1513318112 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Bramanti L, Iannelli M, Fan TY, Edmunds PJ (2015) Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs 34(2):505–515.  https://doi.org/10.1007/s00338-015-1269-z CrossRefGoogle Scholar
  48. Kvitt H, Kramarsky-Winter E, Maor-Landaw K, Zandbank K, Kushmaro A, Rosenfeld H, Fine M, Tchernov D (2015) Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc Natl Acad Sci U S A 112(7):2082–2086.  https://doi.org/10.1073/pnas.1419621112 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yan H, Soon W, Wang Y (2015) A composite sea surface temperature record of the northern South China Sea for the past 2500 years: a unique look into seasonality and seasonal climate changes during warm and cold periods. Earth Sci Rev 141:122–135.  https://doi.org/10.1016/j.earscirev.2014.12.003 CrossRefGoogle Scholar
  50. Chiappori F, Merelli I, Milanesi L, Colombo G, Morra G (2016) An atomistic view of Hsp70 allosteric crosstalk: from the nucleotide to the substrate binding domain and back. Sci Rep-Uk 6:23474.  https://doi.org/10.1038/srep23474 CrossRefGoogle Scholar
  51. Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R, Zachmann-Brand B, Mayer MP, Kramer G, Bukau B, Tans SJ (2016) Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539(7629):448–451.  https://doi.org/10.1038/nature20137 CrossRefPubMedGoogle Scholar
  52. Bascos NAD, Mayer MP, Bukau B, Landry SJ (2017) The Hsp40 J-domain modulates Hsp70 conformation and ATPase activity with a semi-elliptical spring. Protein Sci 26(9):1838–1851.  https://doi.org/10.1002/pro.3223 CrossRefPubMedGoogle Scholar
  53. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373–377.  https://doi.org/10.1038/nature21707 CrossRefPubMedGoogle Scholar
  54. Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD (2017) Gene expression biomarkers of heat stress in scleractinian corals: promises and limitations. Comp Biochem Physiol C Toxicol Pharmacol 191:63–77.  https://doi.org/10.1016/j.cbpc.2016.08.007 CrossRefPubMedGoogle Scholar
  55. Ruiz-Jones LJ, Palumbi SR (2017) Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Sci Adv 3(3):e1601298.  https://doi.org/10.1126/sciadv.1601298 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Seveso D, Montano S, Reggente MA, Maggioni D, Orlandi I, Galli P, Vai M (2017) The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 22(2):225–236.  https://doi.org/10.1007/s12192-016-0756-7 CrossRefPubMedGoogle Scholar
  57. Yuan C, Zhou Z, Zhang Y, Chen G, Yu X, Ni X, Tang J, Huang B (2017) Effects of elevated ammonium on the transcriptome of the stony coral Pocillopora damicornis. Mar Pollut Bull 114(1):46–52.  https://doi.org/10.1016/j.marpolbul.2016.08.036 CrossRefPubMedGoogle Scholar
  58. Zhou Z, Zhang G, Chen G, Ni X, Guo L, Yu X, Xiao C, Xu Y, Shi X, Huang B (2017) Elevated ammonium reduces the negative effect of heat stress on the stony coral Pocillopora damicornis. Mar Pollut Bull 118(1-2):319–327.  https://doi.org/10.1016/j.marpolbul.2017.03.018 CrossRefPubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2018

Authors and Affiliations

  • Yidan Zhang
    • 1
  • Zhi Zhou
    • 1
    • 2
    • 3
  • Lingui Wang
    • 1
    • 2
    • 3
  • Bo Huang
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Tropical Biological Resources of Ministry of EducationHainan UniversityHaikouChina
  2. 2.State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
  3. 3.Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine ScienceHainan UniversityHaikouChina

Personalised recommendations