Skip to main content
Log in

Downhill exercise alters immunoproteasome content in mouse skeletal muscle

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Content of the immunoproteasome, the inducible form of the standard proteasome, increases in atrophic muscle suggesting it may be associated with skeletal muscle remodeling. However, it remains unknown if the immunoproteasome responds to stressful situations that do not promote large perturbations in skeletal muscle proteolysis. The purpose of this study was to determine how an acute bout of muscular stress influences immunoproteasome content. To accomplish this, wild-type (WT) and immunoproteasome knockout lmp7 −/− /mecl1 −/− (L7M1) mice were run downhill on a motorized treadmill. Soleus muscles were excised 1 and 3 days post-exercise and compared to unexercised muscle (control). Ex vivo physiology, histology and biochemical analyses were used to assess the effects of immunoproteasome knockout and unaccustomed exercise. Besides L7M1 muscle being LMP7/MECL1 deficient, no other major biochemical, histological or functional differences were observed between the control muscles. In both strains, the downhill run shifted the force-frequency curve to the right and reduced twitch force; however, it did not alter tetanic force or inflammatory markers. In the days post-exercise, several of the proteasome’s catalytic subunits were upregulated. Specifically, WT muscle increased LMP7 while L7M1 muscle instead increased β5. These findings indicate that running mice downhill results in subtle contractile characteristics that correspond to skeletal muscle injury, yet it does not appear to induce a significant inflammatory response. Interestingly, this minor stress activated the production of specific immunoproteasome subunits that if knocked out were replaced by components of the standard proteasome. These data suggest that the immunoproteasome may be involved in maintaining cellular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong R, Ogilvie R, Schwane J (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54:80–93

    Article  PubMed  CAS  Google Scholar 

  • Attaix D, Ventadour S, Codran A, Béchet D, Taillandier D, Combaret L (2005) The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem 41:173–186

    Article  PubMed  CAS  Google Scholar 

  • Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ (2010) Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol 185:634–641

    Article  PubMed  CAS  Google Scholar 

  • Baumann CW, Green MS, Doyle JA, Rupp JC, Ingalls CP, Corona BT (2014a) Muscle injury after low-intensity downhill running reduces running economy. J Strength Cond Res 28:1212–1218

    Article  PubMed  Google Scholar 

  • Baumann CW, Rogers RG, Gahlot N, Ingalls CP (2014b) Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle. Physiol Rep 2:e12081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumann CW, Kwak D, Liu HM, Thompson LV (2016a) Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol 121:1047–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumann CW, Liu HM, Thompson LV (2016b) Denervation-induced activation of the ubiquitin-proteasome system reduces skeletal muscle quantity not quality. PLoS One 11:e0160839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumann CW, Rogers RG, Otis JS (2016c) Utility of 17-(allylamino)-17-demethoxygeldanamycin treatment for skeletal muscle injury. Cell Stress Chaperones 21:1111–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumann CW, Rogers RG, Otis JS, Ingalls CP (2016d) Recovery of strength is dependent on mTORC1 signaling after eccentric muscle injury. Muscle Nerve 54:914–924

    Article  PubMed  CAS  Google Scholar 

  • Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattarai S et al (2016) The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 75:118–129

    Article  PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooks SV, Zerba E, Faulkner JA (1995) Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol 488:459–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan S, Head S, Morley J (2007) Branched fibers in dystrophic mdx muscle are associated with a loss of force following lengthening contractions. Am J Physiol Cell Physiol 293:C985–C992

    Article  PubMed  CAS  Google Scholar 

  • Chan S, Seto JT, MacArthur DG, Yang N, North K, Head S (2008) A gene for speed: contractile properties of isolated whole EDL muscle from an α-actinin-3 knockout mouse. Am J Physiol Cell Physiol 295:C897–C904

    Article  PubMed  CAS  Google Scholar 

  • Chen C-nJ, Graber TG, Bratten WM, Ferrington DA, Thompson LV (2014) Immunoproteasome in animal models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 35:191–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corona BT, Balog EM, Doyle JA, Rupp JC, Luke RC, Ingalls CP (2010) Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions. Am J Physiol Cell Physiol 298:C365–C376

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Cui Z, Hwang SM, Gomes AV (2014) Identification of the immunoproteasome as a novel regulator of skeletal muscle differentiation. Mol Cell Biol 34:96–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Farini A et al (2016) Therapeutic potential of immunoproteasome inhibition in Duchenne muscular dystrophy. Mol Ther 24:1898–1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrington DA, Gregerson DS (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 19:644–646

    Article  PubMed  CAS  Google Scholar 

  • Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA (2004) Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421:67–76

    Article  PubMed  CAS  Google Scholar 

  • Hussong SA, Kapphahn RJ, Phillips SL, Maldonado M, Ferrington DA (2010) Immunoproteasome deficiency alters retinal proteasome’s response to stress. J Neurochem 113:1481–1490

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hussong SA, Roehrich H, Kapphahn RJ, Maldonado M, Pardue MT, Ferrington DA (2011) A novel role for the immunoproteasome in retinal function. Invest Ophthalmol Vis Sci 52:714–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichikawa HT et al (2012) Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheumatol 64:493–503

    Article  CAS  Google Scholar 

  • Ingalls CP, Warren GL, Armstrong R (1998a) Dissociation of force production from MHC and actin contents in muscles injured by eccentric contractions. J Muscle Res Cell Motil 19:215–224

    Article  PubMed  CAS  Google Scholar 

  • Ingalls CP, Warren GL, Williams JH, Ward CW, Armstrong R (1998b) EC coupling failure in mouse EDL muscle after in vivo eccentric contractions. J Appl Physiol 85:58–67

    Article  PubMed  CAS  Google Scholar 

  • Ingalls CP, Wenke J, Nofal T, Armstrong R (2004) Adaptation to lengthening contraction-induced injury in mouse muscle. J Appl Physiol 97:1067–1076

    Article  PubMed  Google Scholar 

  • Jones D, Howell S, Roussos C, Edwards R (1982) Low-frequency fatigue in isolated skeletal muscles and the effects of methylxanthines. Clin Sci (London, England: 1979) 63:161–167

    Article  CAS  Google Scholar 

  • Jung T, Grune T (2008) The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 60:743–752

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Castillo V, Goldberg AL (1999) Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 4:395–402

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel P-M (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–188

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129:227S–237S

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Liu HM, Ferrington DA, Baumann CW, Thompson LV (2016) Denervation-induced activation of the standard proteasome and immunoproteasome. PLoS One 11:e0166831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López JR, Mijares A, Kolster J, Henriquez-Olguin C, Zhang R, Altamirano F, Adams JA (2016) Whole body periodic acceleration improves muscle recovery after eccentric exercise. Med Sci Sports Exerc 48:1485–1494

    Article  PubMed  Google Scholar 

  • Lowe DA, Warren GL, Ingalls CP, Boorstein DB, Armstrong R (1995) Muscle function and protein metabolism after initiation of eccentric contraction-induced injury. J Appl Physiol 79:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Lueders TN et al (2011) The α7β1-integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise. Am J Physiol Cell Physiol 301:C938–C946

    Article  PubMed  CAS  Google Scholar 

  • Lynch GS, Fary CJ, Williams DA (1997) Quantitative measurement of resting skeletal muscle [Ca2+] i following acute and long-term downhill running exercise in mice. Cell Calcium 22:373–383

    Article  PubMed  CAS  Google Scholar 

  • McArdle A, Dillmann WH, Mestril R, Faulkner JA, Jackson MJ (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357

    Article  PubMed  CAS  Google Scholar 

  • Méndez J, Keys A (1960) Density and composition of mammalian muscle. Metab Clin Exp 9:184–188

    Google Scholar 

  • Muchamuel T et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15:781–787

    Article  PubMed  CAS  Google Scholar 

  • Pizza FX, Koh TJ, McGregor SJ, Brooks SV (2002) Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. J Appl Physiol 92:1873–1878

    Article  PubMed  Google Scholar 

  • Rathbone CR, Wenke J, Warren GL, Armstrong R (2003) Importance of satellite cells in the strength recovery after eccentric contraction-induced muscle injury. Am J Phys Regul Integr Comp Phys 285:R1490–R1495

    CAS  Google Scholar 

  • Reid MB (2005) Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Phys Regul Integr Comp Phys 288:R1423–R1431

    CAS  Google Scholar 

  • Schuld NJ et al (2015) Immunoproteasome deficiency protects in the retina after optic nerve crush. PLoS One 10:e0126768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB (1982) Delayed-onset muscular soreness and plasma CPK and LDH activities after downhill running. Med Sci Sports Exerc 15:51–56

    Google Scholar 

  • Seifert U et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–624

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B 85:12–36

    Article  CAS  Google Scholar 

  • Tanoka K, Kasahara M (1998) The MHC class I ligand generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    Article  Google Scholar 

  • Wang H et al (2016) Increasing regulatory T cells with interleukin-2 and interleukin-2 antibody complexes attenuates lung inflammation and heart failure progression. Hypertension 68:114–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren GL, Hayes D, Lowe D, Armstrong R (1993a) Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle. J Physiol 464:457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warren GL, Lowe DA, Hayes DA, Karwoski CJ, Prior BM, Armstrong R (1993b) Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Physiol 468:487–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westerblad H, Duty S, Allen D (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388

    Article  PubMed  CAS  Google Scholar 

  • Willoughby DS, Taylor M, Taylor L (2003) Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 35:2023–2031

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Elaine and Robert Larson Endowed Vision Research Chair (to DAF), the National Institutes of Health/National Institute of Aging (T32-AG29796 to CWB), an anonymous benefactor for Macular Degeneration Research, the Lindsay Family Foundation and an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology and Visual Neurosciences. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory W. Baumann.

Ethics declarations

Human and animal rights and informed consent

All animal procedures were approved by the Institutional Animal Care and Use Committee at the University of Minnesota.

Electronic supplementary material

Supplementary Fig. 1

Representative CD45 immunostains. Quantitative values are depicted in Fig. 4c. (GIF 75 kb).

High-Resolution Image (TIFF 1478 kb).

Supplementary Table 1

(DOCX 14.2 kb).

Supplementary Table 2

(DOCX 14.7 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumann, C.W., Kwak, D., Ferrington, D.A. et al. Downhill exercise alters immunoproteasome content in mouse skeletal muscle. Cell Stress and Chaperones 23, 507–517 (2018). https://doi.org/10.1007/s12192-017-0857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-017-0857-y

Keywords

Navigation