Advertisement

Cell Stress and Chaperones

, Volume 22, Issue 6, pp 903–910 | Cite as

Serum histones as biomarkers of the severity of heatstroke in dogs

  • Yaron Bruchim
  • Isaac Ginsburg
  • Gilad Segev
  • Ahmad Mreisat
  • Yochai Avital
  • Itamar Aroch
  • Michal Horowitz
Short Communication

Abstract

Heatstroke is associated with systemic inflammatory response syndrome, leading to multiple organ dysfunction and death. Currently, there is no specific treatment decreasing hyperthermia-induced inflammatory/hemostatic derangements. Emerging studies indicate that histones leaking from damaged cells into the extracellular space are toxic, pro-inflammatory, and pro-thrombotic. We therefore hypothesize that serum histones (sHs) are elevated during heatstroke and are associated with the severity of the disease. Sixteen dogs with heatstroke and seven healthy controls were included in the study. Median serum histones (sHs) upon admission in dogs with heatstroke were significantly higher (P = 0.043) compared to that in seven controls (13.2 vs. 7.3 ng/mL, respectively). sHs level was significantly higher among non-survivors and among dogs with severe hemostatic derangement (P = 0.049, median 21.4 ng/mL vs. median 8.16 ng/mL and P = 0.038, 19.0 vs. 7.0 ng/mL, respectively). There were significant positive correlation between sHs and urea (r = 0.8, P = 0.02); total CO2 (r = 0.661, P = 0.05); CK (r = 0.678, P = 0.04); and prothrombin time (PT) 12 h post presentation (r = 0.888, P = 0.04). The significant positive correlation between sHs and other heatstroke severity biomarkers, and significant increase among severely affected dogs, implies its role in inflammation/oxidation/coagulation during heatstroke. sHs, unlike other prognostic and severity biomarkers in heatstroke, can be pharmacologically manipulated, offering a potential therapeutic target.

Keywords

Inflammation Canine Hemostatic Heparin Protein C 

References

  1. Allen KS, Sawheny E, Kinasewitz GT (2015) Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med 4(2):105–115. doi: 10.5492/wjccm.v4.i2.105 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aroch I, Segev G, Loeb E, Bruchim Y (2009) Peripheral nucleated red blood cells as a prognostic indicator in heatstroke in dogs. J Vet Intern Med 23(3):544–551CrossRefPubMedGoogle Scholar
  3. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346(25):1978–1988CrossRefPubMedGoogle Scholar
  4. Bruchim Y, Klement E, Saragusty J, Finkeilstein E, Kass P, Aroch I (2006) Heat stroke in dogs: a retrospective study of 54 cases (1999-2004) and analysis of risk factors for death. J Vet Intern Med 20(1):38–46PubMedGoogle Scholar
  5. Bruchim Y, Loeb E, Saragusty J, Aroch I (2009) Pathological findings in dogs with fatal heatstroke. J Comp Pathol 140(2–3):97–104. doi: 10.1016/j.jcpa.2008.07.011 CrossRefPubMedGoogle Scholar
  6. Bruchim Y, Segev G, Kelmer E, Codner C, Marisat A, Horowitz M (2016) Hospitalized dogs recovery from naturally occurring heatstroke; does serum heat shock protein 72 can provide prognostic biomarker? Cell Stress Chaperones 21(1):123–130. doi: 10.1007/s12192-015-0645-5 CrossRefPubMedGoogle Scholar
  7. Bruchim Y, Kelmer E, Segev G, Aroch I (2017) Hemostatic abnormalities in dogs with naturally-occurring heatstroke. J Vet Emerg Crit Care 27(3):315–324. doi: 10.1111/vec.12590
  8. Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370. doi: 10.1038/cddis.2014.337 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ekaney ML, Otto GP, Sossdorf M, Sponholz C, Boehringer M, Loesche W, Claus RA (2014) Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 18(5):543. doi: 10.1186/s13054-014-0543-8 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Epstein Y, Roberts WO (2011) The pathopysiology of heat stroke: an integrative view of the final common pathway. Scand J Med Sci Sports 21(6):742–748CrossRefPubMedGoogle Scholar
  11. Ginsburg I, Kohen R (1995) Cell damage in inflammatory and infectious sites might involve a coordinated "cross-talk" among oxidants, microbial haemolysins and ampiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (an overview). Free Radic Res 22(6):489–517CrossRefPubMedGoogle Scholar
  12. Ginsburg I, Koren E, Varani J, Kohen R (2016) Nuclear histones: major virulence factors or just additional early sepsis markers? A comment. Inflammopharmacology 24(5):287–289. doi: 10.1007/s10787-016-0279-y CrossRefPubMedGoogle Scholar
  13. Hoeksema M, van Eijk M, Haagsman HP, Hartshorn KL (2016) Histones as mediators of host defense, inflammation and thrombosis. Future Microbiol 11(3):441–453. doi: 10.2217/fmb.15.151 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Iba T, Hashiguchi N, Nagaoka I, Tabe Y, Kadota K, Sato K (2015) Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med Exp 3(1):36. doi: 10.1186/s40635-015-0072-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. Leon LR, Bouchama A (2015) Heat stroke. Compr Physiol 5(2):611–647. doi: 10.1002/cphy.c140017 CrossRefPubMedGoogle Scholar
  16. Leon LR, Helwig BG (2010a) Heat stroke: role of the systemic inflammatory response. J Appl Physiol 109(6):1980–1988. doi: 10.1152/japplphysiol.00301.2010 CrossRefPubMedGoogle Scholar
  17. Leon LR, Helwig BG (2010b) Role of endotoxin and cytokines in the systemic inflammatory response to heat injury. Front Biosci (Schol Ed) 2:916–938CrossRefGoogle Scholar
  18. Segev G, Daminet S, Meyer E, De Loor J, Cohen A, Aroch I, Bruchim Y (2015a) Characterization of kidney damage using several renal biomarkers in dogs with naturally occurring heatstroke. Vet J 206(2):231–235. doi: 10.1016/j.tvjl.2015.07.004 CrossRefPubMedGoogle Scholar
  19. Segev G, Aroch I, Savoray M, Kass PH, Bruchim Y (2015b) A novel severity scoring system for dogs with heatstroke. J Vet Emerg Crit Care (San Antonio) 25(2):240–247. doi: 10.1111/vec.12284 CrossRefGoogle Scholar
  20. Shibolet S, Farfel Z (1975) Letter: heparin therapy for heatstroke. Ann Intern Med 82(6):857–858CrossRefPubMedGoogle Scholar
  21. Wildhagen KC, Garcia de Frutos P, Reutelingsperger CP, Schrijver R, Areste C, Ortega-Gomez A, Nicolaes GA (2014) Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood 123(7):1098–1101. doi: 10.1182/blood-2013-07-514984 CrossRefPubMedGoogle Scholar
  22. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15(11):1318–1321. doi: 10.1038/nm.2053 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Xu Z, Huang Y, Mao P, Zhang J, Li Y (2015) Sepsis and ARDS: the dark side of histones. Mediat Inflamm 2015:205054. doi: 10.1155/2015/205054 Google Scholar
  24. Zawrotniak M, Rapala-Kozik M (2013) Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol 60(3):277–284PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2017

Authors and Affiliations

  • Yaron Bruchim
    • 1
  • Isaac Ginsburg
    • 2
  • Gilad Segev
    • 1
  • Ahmad Mreisat
    • 3
  • Yochai Avital
    • 1
  • Itamar Aroch
    • 1
  • Michal Horowitz
    • 3
  1. 1.Department of Small Animal Emergency and Critical Care, Veterinary Teaching Hospital, Koret School of Veterinary MedicineHebrew University of JerusalemJerusalemIsrael
  2. 2.Faculty of Dental Medicine, Institute for Dental SciencesHebrew University, Hadassah Medical CenterJerusalemIsrael
  3. 3.Laboratory of Environmental Physiology, Hadassah Medical CenterThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations