Cell Stress and Chaperones

, Volume 22, Issue 4, pp 577–588 | Cite as

Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain

  • Afrooz Dabbaghizadeh
  • Stéphanie Finet
  • Genevieve Morrow
  • Mohamed Taha Moutaoufik
  • Robert M. Tanguay


The structure and chaperone function of DmHsp22WT, a small Hsp of Drosophila melanogaster localized within mitochondria were examined. Mutations of conserved arginine mutants within the alpha-crystallin domain (ACD) domain (R105G, R109G, and R110G) were introduced, and their effects on oligomerization and chaperone function were assessed. Arginine to glycine mutations do not induce significant changes in tryptophan fluorescence, and the mutated proteins form oligomers that are of equal or smaller size than the wild-type protein. They all form oligomer with one single peak as determined by size exclusion chromatography. While all mutants demonstrate the same efficiency as the DmHsp22WT in a DTT-induced insulin aggregation assay, all are more efficient chaperones to prevent aggregation of malate dehydrogenase. Arginine mutants of DmHsp22 are efficient chaperones to retard aggregation of CS and Luc. In summary, this study shows that mutations of arginine to glycine in DmHsp22 ACD induce a number of structural changes, some of which differ from those described in mammalian sHsps. Interestingly, only the R110G-DmHsp22 mutant, and not the expected R109G equivalent to human R140-HspB1, R116-HspB4, and R120-HspB5, showed different structural properties compared with the DmHsp22WT.


Small heat shock protein (sHsp) Chaperone assays Alpha-crystallin domain (ACD) DmHsp22 Mitochondria Drosophila melanogaster 



We would like to thank Jérémie Hamel from the Institute for Integrative Systems Biology (IBIS) for help with SEC. The authors also thank Céline Férard and Fériel Skouri-Panet from IMPMC. SF is supported by CNRS. This work has been supported by grants from the Canadian Institutes of Health Research (CIHR) to RMT. MTM was supported by studentships from PROTEO.


  1. Almeida-Souza L et al (2010) Increased monomerization of mutant HSPB1 leads to protein hyperactivity in Charcot-Marie-Tooth neuropathy. J Biol Chem 285:12778–12786. doi: 10.1074/jbc.M109.082644 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arrigo AP, Tanguay RM (1991) Expression of heat shock proteins during development in Drosophila. Results Probl Cell Differ 17:106–119CrossRefPubMedGoogle Scholar
  3. Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252. doi: 10.1016/j.jmb.2009.07.069 CrossRefPubMedGoogle Scholar
  4. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319. doi: 10.1016/j.bbapap.2014.12.019 CrossRefPubMedGoogle Scholar
  5. Baldwin AJ, Hilton GR, Lioe H, Bagneris C, Benesch JL, Kay LE (2011a) Quaternary dynamics of alphaB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. J Mol Biol 413:310–320. doi: 10.1016/j.jmb.2011.07.017 CrossRefPubMedGoogle Scholar
  6. Baldwin AJ, Lioe H, Hilton GR, Baker LA, Rubinstein JL, Kay LE, Benesch JL (2011b) The polydispersity of alphaB-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19:1855–1863. doi: 10.1016/j.str.2011.09.015 CrossRefPubMedGoogle Scholar
  7. Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411:110–122. doi: 10.1016/j.jmb.2011.05.024 CrossRefPubMedGoogle Scholar
  8. Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117. doi: 10.1016/j.tibs.2011.11.005 CrossRefPubMedGoogle Scholar
  9. Biswas A, Das KP (2004) Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J Biol Chem 279:42648–42657. doi: 10.1074/jbc.M404444200 CrossRefPubMedGoogle Scholar
  10. Boncoraglio A, Minoia M, Carra S (2012) The family of mammalian small heat shock proteins (HSPBs): implications in protein deposit diseases and motor neuropathies. Int J Biochem Cell Biol 44:1657–1669. doi: 10.1016/j.biocel.2012.03.011 CrossRefPubMedGoogle Scholar
  11. Bourrelle-Langlois M, Morrow G, Finet S, Tanguay RM (2016) In vitro structural and functional characterization of the small heat shock proteins (sHSP) of the Cyanophage S-ShM2 and its host, Synechococcus sp. WH7803. PLoS One 11:e0162233. doi: 10.1371/journal.pone.0162233 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci U S A 96:6137–6142CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bushueva TL, Busel EP, Burstein EA (1980) Some regularities of dynamic accessibility of buried fluorescent residues to external quenchers in proteins. Arch Biochem Biophys 204:161–166CrossRefPubMedGoogle Scholar
  14. Chavez Zobel AT, Lambert H, Theriault JR, Landry J (2005) Structural instability caused by a mutation at a conserved arginine in the alpha-crystallin domain of Chinese hamster heat shock protein 27. Cell Stress Chaperones 10:157–166CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clark JI, Muchowski PJ (2000) Small heat-shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59CrossRefPubMedGoogle Scholar
  16. Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134. doi: 10.1016/j.jmb.2011.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clark AR, Lubsen NH, Slingsby C (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis. Int J Biochem Cell Biol 44:1687–1697. doi: 10.1016/j.biocel.2012.02.015 CrossRefPubMedGoogle Scholar
  18. Cobb BA, Petrash JM (2000) Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts. Biochemistry 39:15791–15798CrossRefPubMedPubMedCentralGoogle Scholar
  19. Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alphaB crystallin. FEBS Lett 587:1073–1080. doi: 10.1016/j.febslet.2013.01.021 CrossRefPubMedGoogle Scholar
  20. Fernando P, Heikkila JJ (2000) Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity. Cell Stress Chaperones 5:148–159CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fu X, Chang Z (2004) Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from mycobacterium tuberculosis. Biochem Biophys Res Commun 316:291–299. doi: 10.1016/j.bbrc.2004.02.053 CrossRefPubMedGoogle Scholar
  22. Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X, Chang Z (2003) Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun 310:412–420CrossRefPubMedGoogle Scholar
  23. Ghisaidoobe AB, Chung SJ (2014) Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Forster resonance energy transfer techniques. Int J Mol Sci 15:22518–22538. doi: 10.3390/ijms151222518 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ghosh JG, Houck SA, Doneanu CE, Clark JI (2006) The beta4-beta8 groove is an ATP-interactive site in the alpha crystallin core domain of the small heat shock protein, human alphaB crystallin. J Mol Biol 364:364–375. doi: 10.1016/j.jmb.2006.09.003 CrossRefPubMedGoogle Scholar
  25. Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318. doi: 10.1074/jbc.M208926200 CrossRefPubMedGoogle Scholar
  26. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548. doi: 10.1016/j.jmb.2015.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hilario E, Martin FJ, Bertolini MC, Fan L (2011) Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. J Mol Biol 408:74–86. doi: 10.1016/j.jmb.2011.02.004 CrossRefPubMedGoogle Scholar
  28. Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JL (2013) Small heat-shock proteins: paramedics of the cell. Top Curr Chem 328:69–98. doi: 10.1007/128_2012_324 CrossRefPubMedGoogle Scholar
  29. Houlden H, Laura M, Wavrant-De Vrieze F, Blake J, Wood N, Reilly MM (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71:1660–1668. doi: 10.1212/01.wnl.0000319696.14225.67 CrossRefPubMedGoogle Scholar
  30. Ikeda Y, Abe A, Ishida C, Takahashi K, Hayasaka K, Yamada M (2009) A clinical phenotype of distal hereditary motor neuronopathy type II with a novel HSPB1 mutation. J Neurol Sci 277:9–12. doi: 10.1016/j.jns.2008.09.031 CrossRefPubMedGoogle Scholar
  31. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. Journal of exercise rehabilitation 12:255–259. doi: 10.12965/jer.1632642.321 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jehle S et al (2009) AlphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497. doi: 10.1016/j.jmb.2008.10.097 CrossRefPubMedGoogle Scholar
  33. Kappe G, Boelens WC, de Jong WW (2010) Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15:457–461. doi: 10.1007/s12192-009-0155-4 CrossRefPubMedGoogle Scholar
  34. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599. doi: 10.1038/29106 CrossRefPubMedGoogle Scholar
  35. Kumar LV, Ramakrishna T, Rao CM (1999) Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem 274:24137–24141CrossRefPubMedGoogle Scholar
  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  37. Laganowsky A et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science: a Publication of the Protein Society 19:1031–1043. doi: 10.1002/pro.380 CrossRefGoogle Scholar
  38. Li F, Mao HP, Ruchalski KL, Wang YH, Choy W, Schwartz JH, Borkan SC (2002) Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. American Journal of Physiology Cell Physiology 283:C917–C926. doi: 10.1152/ajpcell.00517.2001 CrossRefPubMedGoogle Scholar
  39. Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474CrossRefPubMedGoogle Scholar
  40. Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8:e81207. doi: 10.1371/journal.pone.0081207 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marcillat O, Zhang Y, Davies KJ (1989) Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. The Biochemical Journal 259:181–189CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marin R, Tanguay RM (1996) Stage-specific localization of the small heat shock protein Hsp27 during oogenesis in Drosophila melanogaster. Chromosoma 105:142–149CrossRefPubMedGoogle Scholar
  43. Marin R, Valet JP, Tanguay RM (1993) hsp23 and hsp26 exhibit distinct spatial and temporal patterns of constitutive expression in Ddrosophila adults. Dev Genet 14:69–77. doi: 10.1002/dvg.1020140109 CrossRefPubMedGoogle Scholar
  44. Marin R, Landry J, Tanguay RM (1996) Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila. Exp Cell Res 223:1–8. doi: 10.1006/excr.1996.0052 CrossRefPubMedGoogle Scholar
  45. McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837. doi: 10.1021/bi900212j CrossRefPubMedPubMedCentralGoogle Scholar
  46. Michaud S, Tanguay RM (2003) Expression of the Hsp23 chaperone during Drosophila embryogenesis: association to distinct neural and glial lineages. BMC Dev Biol 3:9. doi: 10.1186/1471-213x-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Michaud S, Marin R, Westwood JT, Tanguay RM (1997) Cell-specific expression and heat-shock induction of Hsps during spermatogenesis in Drosophila melanogaster. J Cell Sci 110(Pt 17):1989–1997PubMedGoogle Scholar
  48. Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol 28:79–101CrossRefPubMedGoogle Scholar
  49. Michiel M, Skouri-Panet F, Duprat E, Simon S, Ferard C, Tardieu A, Finet S (2009) Abnormal assemblies and subunit exchange of alphaB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure. Biochemistry 48:442–453. doi: 10.1021/bi8014967 CrossRefPubMedGoogle Scholar
  50. Michiel M, Duprat E, Skouri-Panet F, Lampi JA, Tardieu A, Lampi KJ, Finet S (2010) Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Exp Eye Res 90:688–698. doi: 10.1016/j.exer.2010.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030. doi: 10.1038/nsb722 CrossRefPubMedGoogle Scholar
  52. Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14:291–299CrossRefPubMedGoogle Scholar
  53. Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44:1613–1621. doi: 10.1016/j.biocel.2012.03.009 CrossRefPubMedGoogle Scholar
  54. Morrow G, Tanguay RM (2015) Drosophila small heat shock proteins: an update on their features and functions. In: Tanguay RM, Hightower LE (eds) The big book on small heat shock proteins. Springer International Publishing, Cham, pp 579–606. doi: 10.1007/978-3-319-16077-1_25
  55. Morrow G, Inaguma Y, Kato K, Tanguay RM (2000) The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J Biol Chem 275:31204–31210. doi: 10.1074/jbc.M002960200 CrossRefPubMedGoogle Scholar
  56. Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 18:598–599. doi: 10.1096/fj.03-0860fje Google Scholar
  57. Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  58. Moutaoufik MT, Morrow G, Maaroufi H, Ferard C, Finet S, Tanguay RM (2016) Oligomerization and chaperone-like activity of Drosophila melanogaster small heat shock protein DmHsp27 and three arginine mutants in the alpha-crystallin domain. Cell Stress Chaperones. doi: 10.1007/s12192-016-0748-7 PubMedGoogle Scholar
  59. Muchowski PJ, Clark JI (1998) ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc Natl Acad Sci U S A 95:1004–1009CrossRefPubMedPubMedCentralGoogle Scholar
  60. Muranova LK, Weeks SD, Strelkov SV, Gusev NB (2015) Characterization of mutants of human small heat shock protein HspB1 carrying replacements in the N-terminal domain and associated with hereditary motor neuron diseases. PLoS One 10:e0126248. doi: 10.1371/journal.pone.0126248 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2016) The chaperone activity and substrate spectrum of human small heat shock proteins. J Biol Chem. doi: 10.1074/jbc.M116.760413 PubMedGoogle Scholar
  62. Nefedova VV, Datskevich PN, Sudnitsyna MV, Strelkov SV, Gusev NB (2013) Physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathies. Biochimie 95:1582–1592. doi: 10.1016/j.biochi.2013.04.014 CrossRefPubMedGoogle Scholar
  63. Roebben G et al (2015) Reference materials and representative test materials to develop nanoparticle characterization methods: the NanoChOp project case. Frontiers in Chemistry 3:56. doi: 10.3389/fchem.2015.00056 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Skouri-Panet F, Michiel M, Ferard C, Duprat E, Finet S (2012) Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie 94:975–984. doi: 10.1016/j.biochi.2011.12.018 CrossRefPubMedGoogle Scholar
  65. Sluchanko NN, Roman SG, Chebotareva NA, Gusev NB (2014) Chaperone-like activity of monomeric human 14-3-3zeta on different protein substrates. Arch Biochem Biophys 549:32–39. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  66. Southgate R, Ayme A, Voellmy R (1983) Nucleotide sequence analysis of the drosophila small heat shock gene cluster at locus 67B. J Mol Biol 165:35–57CrossRefPubMedGoogle Scholar
  67. Stengel F et al (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci U S A 107:2007–2012. doi: 10.1073/pnas.0910126107 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sudnitsyna MV, Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) The role of intrinsically disordered regions in the structure and functioning of small heat shock proteins. Curr Protein Pept Sci 13:76–85CrossRefPubMedGoogle Scholar
  69. Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cellular and Molecular Life Sciences: CMLS 62:2460–2476. doi: 10.1007/s00018-005-5190-4 CrossRefPubMedGoogle Scholar
  70. Takeda K, Hayashi T, Abe T, Hirano Y, Hanazono Y, Yohda M, Miki K (2011) Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. J Struct Biol 174:92–99. doi: 10.1016/j.jsb.2010.12.006 CrossRefPubMedGoogle Scholar
  71. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788. doi: 10.1038/nrm2993 CrossRefPubMedGoogle Scholar
  72. Vicart P et al (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95. doi: 10.1038/1765 CrossRefPubMedGoogle Scholar
  73. Vos MJ, Hageman J, Carra S, Kampinga HH (2008) Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry 47:7001–7011. doi: 10.1021/bi800639z CrossRefPubMedGoogle Scholar
  74. Weeks SD, Drinker M, Loll PJ (2007) Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr Purif 53:40–50. doi: 10.1016/j.pep.2006.12.006 CrossRefPubMedGoogle Scholar
  75. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336PubMedGoogle Scholar

Copyright information

© Cell Stress Society International 2017

Authors and Affiliations

  • Afrooz Dabbaghizadeh
    • 1
  • Stéphanie Finet
    • 2
  • Genevieve Morrow
    • 1
  • Mohamed Taha Moutaoufik
    • 1
  • Robert M. Tanguay
    • 1
  1. 1.Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, de biochimie médicale et de pathologie, Faculté de médecine, Institut de biologie intégrative et des systèmes (IBIS) and PROTEOUniversité LavalQuébecCanada
  2. 2.IMPMC UMR7590, CNRS, Sorbonne-Universités, MNHN, IRDParisFrance

Personalised recommendations